Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Числовые характеристики дискретной случайной величины




Понятия случайной величины.

Закон распределения дискретной случайной величины.

Определение: Случайной называется величина, которая в результате испытания принимает только одно значение из возможного множества своих значение, наперед неизвестное и зависящее от случайных причин.

 

Различают два вида случайных величин: дискретные и непрерывные.

Определение: Случайная величина Х называется дискретной (прерывной), если множество ее значений конечное или бесконечное, но счетное.

 

Другими словами, возможные значения дискретной случайной величину можно перенумеровать.

 

Описать случайную величину можно с помощью ее закона распределения.

Определение: Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями.

 

Закон распределения дискретной случайной величины Х может быть задан в виде таблицы, в первой строке которой указаны в порядке возрастания все возможные значения случайной величины, а во второй строке соответствующие вероятности этих значений, т.е.

 

x x1 x2 х3 хn
p р1 р2 р3 ... рn

 

где р1+ р2+…+ рn=1

 

Такая таблица называется рядом распределения дискретной случайной величины.

 

Если множество возможных значений случайной величины бесконечно, то ряд р1+ р2+…+ рn+… сходится и его сумма равна 1.

 

Закон распределения дискретной случайной величины Х можно изобразить графически, для чего в прямоугольной системе координат строят ломаную, соединяющую последовательно точки с координатами (xi;pi), i=1,2,…n. Полученную линию называют многоугольником распределения (рис.1).

 

 

 

 

рис.1

 

 

Закон распределения дискретной случайной величины Х может быть также задан аналитически (в виде формулы):

P(X=xi)=φ(xi),i =1,2,3…n

 

Задача№1. Вероятности того, что студент сдаст экзамен в сессию по математическому анализу и органической химии соответственно равны 0,7 и 0,8. Составить закон распределения случайной величины Х- числа экзаменов, которые сдаст студент.

Решение. Рассматриваемая случайная величина X в результате экзамена может принять одно из следующих значений:x1=0, x2=1, х3=2.

Найдем вероятность этих значений.Обозначим события:

 

 

По условию:

 

Тогда:

 
 

 


Итак, закон распределения случайной величины Х задается таблицей:

 

x      
p 0,6 0,38 0,56

 

Контроль:0,6+0,38+0,56=1.

 

Функция распределения

Полное описание случайной величины дает также функция распределения.

 

Определение: Функцией распределения дискретной случайной величины Х называется функция F(x), определяющая для каждого значения х вероятность того, что случайная величина Х примет значение, меньше х:

 

F(x)=Р(Х<х)

 

Геометрически функция распределения интерпретируется как вероятность того, что случайная величина Х примет значение, которое изображается на числовой прямой точкой, лежащей левее точки х.

 

Свойства функции распределения:

1)0≤ F(x) ≤1;

2) F(x)- неубывающая функция на (-∞;+∞);

3) F(x)- непрерывна слева в точках х= xi (i=1,2,…n) и непрерывна во всех остальных точках;

4) F(-∞)=Р (Х<-∞)=0 как вероятность невозможного события Х<-∞,

F(+∞)=Р(Х<+∞)=1 как вероятность достоверного события Х<-∞.

 

Если закон распределения дискретной случайной величины Х задан в виде таблицы:

x x1 x2 х3 хn
p р1 р2 р3 ... рn

 

то функция распределения F(x) определяется формулой:

0 при х≤ x1,

р1 при x1< х≤ x2,

F(x)= р1 + р2 при x2< х≤ х3

… … …

1 при х> хn.

 

 


Её график изображен на рис.2:

 

 

рис.2

 

 

Числовые характеристики дискретной случайной величины.

К числу важных числовых характеристик относится математическое ожидание.

 

Определение: Математическим ожиданием М(Х) дискретной случайной величины Х называется сумма произведений всех ее значений на соответствующие им вероятности:

n

М(Х) = ∑ xiрi= x1р1 + x2р2+…+ xnрn

i=1

 

Математическое ожидание служит характеристикой среднего значения случайной величины.

 

Свойства математического ожидания:

1)M(C)=C, где С-постоянная величина;

2)М(С•Х)=С•М(Х),

3)М(Х±Y)=М(Х) ±M(Y);

4)M(X•Y)=M(X) •M(Y), где X,Y- независимые случайные величины;

5)M(X±C)=M(X)±C, где С-постоянная величина;

 

Для характеристики степени рассеивания возможных значений дискретной случайной величины вокруг ее среднего значения служит дисперсия.

 

Определение: Дисперсией D(X) случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

D(X)=M(X-M(X))2

Свойства дисперсии:

1)D(C)=0, где С-постоянная величина;

2)D(X)>0, где Х- случайная величина;

3)D(C•X)=C2•D(X), где С-постоянная величина;

4)D(X+Y)=D(X)+D(Y), где X,Y- независимые случайные величины;

 

Для вычисления дисперсии часто бывает удобно пользоваться формулой:

 

D(X)=M(X2)-(M(X))2,

n

где М(Х)=∑ xi2рi= x12р1 + x22р2+…+ xn2рn

i=1

Дисперсия D(X) имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния возможных значений случайной величины используют также величину √D(X).

Определение: Средним квадратическим отклонением σ(Х) случайной величины Х называется квадратный корень из дисперсии:

 

 

Задача №2. Дискретная случайная величина Х задана законом распределения:

х -1        
р 0,1 Р2 0,3 0,2 0,3

 

Найти Р2, функцию распределения F(x) и построить ее график, а также M(X),D(X), σ(Х).

 

Решение: Так как сумма вероятностей возможных значений случайной величины Х равна 1, то

Р2=1- (0,1+0,3+0,2+0,3)=0,1

Найдем функцию распределения F(х)=P(X<x).

Геометрически это равенство можно истолковать так: F(х) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.

Если х≤-1, то F(х)=0, т.к. на (-∞;х) нет ни одного значения данной случайной величины;

Если -1<х≤0, то F(х)=Р(Х=-1)=0,1, т.к. в промежуток (-∞;х) попадает только одно значение x1=-1;

Если 0<х≤1, то F(х)=Р(Х=-1)+ Р(Х=0)=0,1+0,1=0,2, т.к. в промежуток

(-∞;х) попадают два значения x1=-1 и x2=0;

Если 1<х≤2, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)= 0,1+0,1+0,3=0,5, т.к. в промежуток (-∞;х) попадают три значения x1=-1, x2=0 и x3=1;

Если 2<х≤3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)= 0,1+0,1+0,3+0,2=0,7, т.к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1 и х4=2;

Если х>3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)+Р(Х=3)= 0,1+0,1+0,3+0,2+0,3=1, т.к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1,х4=2 и х5=3.

 

 

Итак,

0 при х≤-1,

0,1 при -1<х≤0,

0,2 при 0<х≤1,

F(x)= 0,5 при 1<х≤2,

0,7 при 2<х≤3,

1 при х>3

 
 


Изобразим функцию F(x)графически (рис.3):

рис. 3

 

Найдем числовые характеристики случайной величины:

n

М(Х) = ∑ xκрκ =x1р1 + x2р2+…+ xnрn

κ=1

M(X)=-1•0,1+0•0,1+1•0,3+2•0,2+3•0,3=1,5

n

D(X)= ∑ x2κрκ –(M(X))2 = x21р1 + x22р2+…+ x2nрn –(M(X))2

κ=1

D(X)=(-1)2 •0,1+12•3+22•0,2+32•0,3-(1,5)2=1,65

≈1,2845.





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 650 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2210 - | 2136 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.