Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Линейный гармонический осциллятор




Линейный (одномерный) гармонический осциллятор ______________________________

Система, совершающая одномерное движение под действием квазиупругой силы. Задача о гармоническом осцилляторе в квантовой теории играет фундаментальную роль по двум причинам: 1) она встречается во всех задачах, где имеют место квантованные колебания (например, в квантовой теории поля, в теории молекулярных и кристаллических колебаний и т. д.); 2) проблемы, относящиеся к гармоническому осциллятору, — хорошая иллюстрация основных принципов и форм квантовой механики.

6.57 Описание гармонического осциллятора в квантовой механике_________________

Потенциальная энергия линейного гармонического осциллятора ___________________


Потенциальная яма в данном случае является параболической.


 

Оператор Гамильтона для осциллятора __________________________________________


6.37


 

 

Стационарное уравнение Шредингера в операторной форме ________________________

Это уравнение по внешнему виду совпадает с записанным выше уравнением 6.38, однако здесь другой оператор.


 

Уравнение Шредингера для гармонического осциллятор а __________________________


Это же уравнение получается при подстановке Uв стационарное уравнение Шредингера 6.25.

 

[ т — масса частицы; ω0 — собственная частота колебаний осциллятора x - отклонение из положения равновесия; — оператор кинетической энергии; — оператор потенциальной энергии; - постоянная Планка; Е — полная энергия осциллятора; Ψ — координатная часть волновой функции]

6.58 Следствия уравнения Шредингера для квантового осциллятора________________

Собственные значения энергии __________________________________________________


 

Уравнение Шредингера имеет однозначные, конечные и непрерывные решения только при таких Еп, т. е. энергия квантового осциллятора может иметь лишь дискретные решения (квантуется).

0 — собственная частота колебаний осциллятора; — постоянная Планка; Еп — собственные значения энергии; Е0 — энергия нулевых колебаний]

Расстояние между соседними уровнями ___________________________________________

Уровни энергии линейного гармонического осциллятора расположены на одинаковых расстояниях друг от друга (на рисунке 6.59 они изображены горизонтальными прямыми)


Энергия нулевых колебаний ___________________________________________________

Ее существование типично для квантовых систем; следствие соотношения неопределенностей: частица не может находиться на дне потенциальной ямы независимо от ее формы. Если бы это было возможно, то импульс, а также его неопределенность, обращались бы в нуль. Тогда неопределенность координаты , что противоречит пребыванию час­тицы в потенциальной яме.

6.59 Плотности вероятности обнаружения частицы______________________________

Представлены кривые распреде­ления плотности вероятности |\|/п(х)|2 для различных состояний квантового осциллятора (для п = 0, 1 и 2). В точках А и А', Вй В', С и С потенциальная энергия равна полной энергии (U = Е), причем, как известно, классиче­ский осциллятор не может вый­ти за пределы этих точек. Для квантового осциллятора и за пределами этих точек имеет конечные значения. Последнее означает, что имеется конечная, хотя и небольшая, вероятность обнаружить частицу за предела­ми потенциальной ямы. Область, запрещенная

Этот результат не противоречит выводам кван­товой классической механикой

механики, так как равенство Т = Е -Uв квантовой механике не имеет силы, поскольку кинетическая (Т) и потенциальная (U) энергии не являются одновременно измеримыми величинами

.

6.60 Плотности вероятности

для квантового и классического осцилляторов___________________________________

На рисунке — кривая распределения При больших значениях п квантовое рас-
плотности вероятности для кванто- пределение плотности вероятности (сплош-
вого (сплошная кривая) и классиче- ная кривая) принимает все большее сход-
ского (пунктир) осциллятора. Поведе- ство с классическим распределением плот-
ние квантового осциллятора значи- ности вероятности (пунктир). В этом про-
тельно отличается от классического является принцип соответствия Бора

Принцип соответствия Бора ______________________________________________ _____

Выводы и законы квантовой механики при больших значениях квантовых чисел должны соответствовать выводам и законам классической физики.

 

 


Уравнения, связывающие корпускулярные свойства (энергия и импульс) и волновые (частота (длина волны)) характеристики микрочастиц _____________________________

Формулы такие же, что и для фотона.

[ к — волновое число; постоянная Планка; циклическая частота]

6. 14 Длина волны де Бройля___________________________________________________

[h— постоянная Планка; р — импульс; т — масса частицы; υ — скорость части­цы; Т — кинетическая энергия частицы; с — скорость распространения света в вакууме; Е — полная энергия частицы]





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 1330 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2587 - | 2227 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.