Лекции.Орг
 

Категории:


Искусственные сооружения железнодорожного транспорта: Искусственные сооружения по протяженности составляют в среднем менее 1,5% общей длины пути...


Транспортировка раненого в укрытие: Тактика действий в секторе обстрела, когда раненый не подает признаков жизни...


Объективные признаки состава административного правонарушения: являются общественные отношения, урегулированные нормами права и охраняемые...

ПОТЕНЦИАЛЬНЫЙ БАРЬЕР КОНЕЧНОЙ ШИРИНЫ



ТУННЕЛЬНЫЙ ЭФФЕКТ

6.49 Потенциальный барьер конечной ширины___________________________________

[U0 — высота потенциального барьера; Е — полная энергия частицы; m — масса частицы]

6.50 Энергия частицы больше высоты потенциального барьера_____________________

[k1,3 = и k2 = — волновые числа; λ 1, 3 и λ2 — соответственно длины волн де Бройля в областях 1, 3 и 2]

Общие решения уравнений Шредингера___________________________________________

В области 3 имеется только прошедшая барьер волна, поэтому коэффициент В3 принят равным нулю.

соответствует плоской волне, распространяющейся в положительном направлении оси х (падающей волне), е -ikx— отраженной волне. О волнах может идти речь после умножения на временной множитель, так как Ψ— координатная часть волновой функции.


Возможное определение коэффициентов отражения и прозрачности

Вывод.В случае Е >U0 волна на границе 1 и 2 частично отражается ( и частично проходит в область 2, затем она опять на границе 2 и 3 частично отражается ( ) и частично проходит в область 3. В облас­ти 2 (см. рисунок 6.50) длина волны де Бройля больше, чем в областях 1 и З.

Итак, при E > U0 имеем k1,3 > k2 и λ2 > λ1,3

Энергия частицы

меньше высоты потенциального барьера (Е < U0)_____________________________

Уравнение Шредингера_________________________________________________________

Общие решения уравнений Шредингера__________________________________________

В области 2 решение Ψ2 (х) не соответствует плоским волнам, распространяющимся в обе стороны (показатели экспонент не мнимые, а действительные).

 

 

♦ В области 3 имеется только волна, прошедшая сквозь барьер и распространяющаяся слева направо, поэтому принято В3 = 0. Из условий непрерывности волновой функции и ее первой производной в точках х = 0 и х = можно найти коэффициенты А2 и В2. Можно показать, что для высокого и широкого барьера »1) В2 » А2, а тогда на границе потенциального барьера, где х = 0, опреде ляющим членом волновой функции Ψ2 является член, содержащий В2 .

Вывод.В случае Е < U0, согласно квантовой механике, микрочастица может «пройти» сквозь потенциальный барьер. Это специфическое квантовое явление получило название туннельного эффекта.


6.53 Туннельный эффект________________________________________________________________

Волновые функции в областях 1, 2 и 3_________________________________________________

6.52

 


Выводы.Волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т. е. с той же частотой, но с меньшей амплитудой. Следовательно, частица имеет отличную от нуля вероятность прохождения сквозь по­тенциальный барьер конечной ширины — наблюдается туннельный эффект.


6.54 Коэффициент прозрачности для прямоугольного барьера______________________

Коэффициент прозрачности (вероятность проникновения

сквозь потенциальный барьер конечной ширины)___________________________


D быстро убывает с увеличением ширины барьера, а также с ростом его высоты.


[U0 — высота потенциального барьера; Е — энергия частицы; — ширина прямо­угольного барьера; т — масса частицы; — постоянная Планка; D0 — по­стоянный множитель, который, как показывают точные расчеты, не очень отли­чается от единицы]

6.55 Коэффициент прозрачности для барьера произвольной формы____ ___________


 

 

Эта формула — хорошее приближение в случае потенциального барьера произволь­ной формы, если барьер удовлетворяет ус­ловию квазиклассического приближения (достаточно гладкая форма кривой).

♦ Эта формула — обобщение формулы для D в случае прямоугольного барьера.


6.56 Выводы относительно поведения классической

и квантовой частиц_______________________________________________________


При Е < U0 по классической теории частицы не смогут преодолеть потен­циального барьера и отразятся от него; согласно квантовой теории, часть частиц отражается, а часть имеет отличную от нуля вероятность пройти сквозь потенциальный барьер. При Е > U0,по классической теории все частицы преодолевают потенциальный барьер; согласно квантовой тео­рии, часть частиц проходит, а часть отражается. Как подбаръерное про­хождение, так и надбарьерное отражение являются специфическими квантовыми эффектами, связанными с волновыми свойствами частиц.





Дата добавления: 2015-11-05; просмотров: 2819 | Нарушение авторских прав


Рекомендуемый контект:


Похожая информация:

  1. Анализ и современные требования к технике барьерного бега на 110м и 100м
  2. Барьер отрицательных эмоций
  3. Барьер техники и навыков общения
  4. Барьерная (транспортная) функция биологических мембран. Пассивный и активный транспорт веществ через мембрану. Эндоцитоз и экзоцитоз
  5. Барьеры в логистической цепи
  6. Барьеры коммуникации, их характеристика
  7. Валовый внутренний продукт. ВВП – это общий объем конечной продукции, произведенный на территории государства в течение года
  8. Величиной конечной прочности Отсутствует в составе гипсовый камень
  9. Глава 4. «Барьеры» в педагогическом взаимодействии, общении и учебно-педагогической деятельности
  10. Другое название деформации, чаще применяемое к веревкам, - относительное удлинение, то есть отношение длины конечной (под нагрузкой) к длине исходной (не нагруженной)
  11. Зависимость ширины сечений деревянных элементов от пролета конструкций
  12. Задания для самостоятельной работы. 1. Выпишите в словарь основные понятия темы: коммуникация, коммуникативный барьер, хронотоп, внушение


Поиск на сайте:


© 2015-2019 lektsii.org - Контакты - Последнее добавление

Ген: 0.003 с.