Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Мембраны и кровь как грубодисперсные системы




Мембраны: многослойные комплексы, включающие билипидный слой, стабилизированный белковыми молекулами, гидрофобные концы которых обращены в сторону молекул липидов, а гидрофильные – в сторону цитоплазмы и наружу, в сторону межклеточного вещества. В силу водородных связей последние притягивают молекулы воды, придавая мембране стабильность и определенную степень гидрофильности. Коллоидные свойства мембран обеспечивают барьерную, метаболическую, разделительную, каркасную, защитную, поддержания тургора в растительных клетках, транспортную, контактную (плазмодесмы, десмосомы), ферментативную и другие функции мембран. Мембраны принимают участие в образовании мембранных клеточных органелл (ядра, митохондрии, лизосомы и др.). Одной из важнейших функций мембран является их участие в лиганд-рецепторном взаимодействии (гликокаликс), обеспечивающем «узнавание» и распознавание чужеродной антигенной информации и др.

Представления об ориентации молекул ПАВ в насыщенном адсорбционном слое сыграли большую роль в развитии учения о структуре биологических мембран. Клеточные мембраны образованы главным образом молекулами двух типов: липидами и белками.

Липиды нерастворимы в воде, но растворимы в органических растворителях. Особенностью мембранных липидов является то, что на одном конце их молекулы есть полярные группы (например, –СООН), обладающие гидрофильными свойствами, тогда как другой ее конец представляет собой длинную углеводородную цепь с гидрофобными свойствами. Липиды образуют бимолекулярные пленки (толщиной около 70 Å), в которых полярные группы располагаются на обеих поверхностях мембраны, а неполярные погружены внутрь ее.

Молекулы белка могут располагаться вблизи внешней и внутренней поверхностей мембраны, а также проникать, частично или полностью, через всю ее толщину.

Обычно клеточные мембраны весьма прочны и обладают свойствами электрического изолятора. Биологические мембраны не являются жесткими структурами. Например, во многих случаях белки и липиды внутри мембран находятся в постоянном движении.

Кровь является типичными примером ткани организма, где одни коллоиды находятся внутри других. В.А.Исаев дает определение крови как дисперсной системеы в которой форменные элементы – эритроциты, тромбоциты, лейкоциты являются фазой, а плазма – дисперсной средой. Однако по определению максимальных размеров, которых могут достигать коллоидные частицы он составляет 10-7 м., тогда как размер тромбоцитов равен 0,5-0,75×10-6 м, эритроцитов: 7×10-6 м, а размеры лейкоцитов превышают размеры эритроцитов в несколько раз. Таким образом, форменные элементы не могут считаться дисперсной фазой коллоидной системы и сами представляют из себя коллоид в коллоиде. Тем не менее именно они обусловливают вязкость крови, которая в 5 раз превышает вязкость воды.

К настоящему времени наиболее изученными являются коллоидные системы плазмы крови. Практически все органические составляющие плазмы находятся в ней в коллоидном состоянии. Основной дисперсионной средой является вода, дисперсионная фаза представляет собой самые разнообразные по химическому составу и молекулярному строению вещества: от молекул аминокислот и олигопептидов до крупных белковых молекул (фибрин, альбумины, глобулины, ферменты, нуклеопротеиды, гормоны белковой природы, транспортные белки и др.); от молекул моно- и дисахаридов и жирных кислот до лецитинов, триглицеридов и липидных хиломикронов высокой и низкой плотности. Плазма крови содержит изобилие низкомолекулярных органических веществ, таких как мочевина, креатинин, холестерин, стероидные гормоны, витамины. В плазме находятся катионы электролитов калия, натрия, магния, кальция, анионы хлора, сульфата, фосфата, карбоната, а также полный спектр микроэлементов.

С точки зрения коллоидной химии плазма крови представляет собой сложную систему коллоидов. Белки представляют собой основную составляющую дисперсионной фазы. Обращая свои лиофобные группы (-CH2, -СH3 и др.) в сторону нерастворимых в воде молекул липидов, стероидов и жирных кислот, а гидрофильные концы (-COOH, -NH2, -SH) - в сторону молекул воды и электролитов, белки являются основными стабилизаторами коллоидной системы плазмы крови. Обладая наряду с этим амфотерными свойствами, они являются основными переносчиками, транспортерами низкомолекулярных веществ в организме. Основными белками крови являются сывороточные альбумины и фибриноген. Именно эти соединения обеспечивают коллоидные свойства плазмы, в т.ч. её вязкость и др.

В крови находится целый ряд белков, представляющих собой каскадные системы, обеспечивающие осуществление жизненно важных функций организма. Сюда относятся свёртывающая и противосвёртывающая системы крови (система фибринолиза), калликреин-кининовая система и система комплемента. Нарушение целостности тканей в результате травм, попадания в кровь чужеродных объектов (вирусы, бактерии) нарушают поверхностное натяжение и другие свойства этих коллоидных систем. Это приводит к активации фактора Хагемана, который запускает в действие первые три из названных систем. Активация системы свёртывания приводит к образованию на поверхности бактерий и вирусов, а также на повреждённых тканях нитей фибрина из фибриногена. Одновременно фактор Хагемана активирует плазмин из системы фибринолиза, который разрубает нити фибрина на фибринпептиды. Т.о., запускается каскад белков двух действующих в противоположном направлении систем, которые приходят в динамическое равновесие между собой. При этом растворённый в плазме в виде золя фибриноген ферментативным способом переходит в фибрин, представляющий собой гель и обратно, подобно тому, как это происходит при изотермическом обратимом переходе золь в гель и обратно, что получило название тиксотропии. Явление тиксотропии ранее было описано вне живого организма (Г. Фрейндлих). Тиксотропные структуры возникают лишь при определённой концентрации коллоидных частиц и электролитов и относятся к коагуляционным структурам, образующимся при определённых условиях. В нашем примере такой переход осуществляется под действием ферментов свёртывающей и противосвёртывающей систем крови.

Активация фактором Хагемана калликреин-кининовой системы также приводит к последовательной, каскадной активации белков этой системы, расширению капилляров и повышению их проницаемости.

Система комплемента имеет колоссальное значение в сохранении иммунного гомеостаза и борьбе с чужеродными агентами (бактерии, вирусы, злокачественные клетки). Система состоит из 25 белков, которые активируются компонентом С3 и последовательно переходят в состояние золь-гель, присоединяясь к комплексу антиген-антитело.

Липиды находятся в плазме в виде эмульсий. Частицы дисперсной фазы липидных эмульсий получили название хиломикронов. Дисперсное состояние и величина хиломикронов напрямую зависят от участия в процессе их эмульгации белковых молекул. Белки способствуют эмульгированию липидов, находящихся в плазме, осуществляют их транспорт и как бы передают другим белкам при передаче через мембраны. Хиломикроны крови состоят из холестерина и жирных кислот, нейтральных липидов и фосфолипидов с присоединенными к ним молекулами белков. В клинической практике их называют липопротеидами высокой (ЛПВП) и низкой (ЛПНП) плотности. Определение их количественного содержания в крови пациентов имеет большое значение в диагностике гиперхолестеринемии и борьбы с ней.

При патологических состояниях в плазме крови могут оказаться вещества различной химической природы, которые в норме либо отсутствуют в ней, либо присутствуют в очень небольших количествах. Так, при заболеваниях, сопровождающихся нарушениями выделительной функции пораженных органов, в плазме крови резко изменяется содержание ряда ее компонентов: при желтухах резко возрастает содержание желчных кислот и продуктов распада гемоглобина, при уремии – продуктов катаболизма белков мочевины и креатинина, ионов калия; при различных инфекциях в ней появляются микробные токсины белковой или полисахахаридной природы, при химических отравлениях - чужеродные химические вещества. Изменения в белковом составе плазмы крови могут происходить при многих заболеваниях. Они бывают наиболее выражены при миеломной болезни и болезни Вальденстрема, при которых в крови в больших количествах обнаруживаются так называемые парапротеины - макроглоблины М типа белка Бенс Джонса, а также при коллагенозах и злокачественных новообразованиях, сопровождающихся гиперпродукцией иммуноглобулинов. Эти изменения нарушают биохимический состав и влияют на коллоидные свойства плазмы крови и те функции, которые функции, которые должны выполнять ее коллоидные компоненты. Так, например, нарушения в системах свертывания – противосвертывания крови сдвигает динамическое равновесие между ними в сторону преобладания процесса свертывания, что приводит к образованию тромбов в кровеносных сосудах. Это, в свою очередь, является патогенетической основой развития инфарктов миокарда, ишемических инсультов головного мозга и тромбозов сосудов любой локализации.

 

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

 

1. Биоорганическая химия: учебник / Н. А. Тюкавкина, Ю. И. Бауков, С. Э. Зурабян. - М.: ГЭОТАР-Медиа. - 2010. - 416 с.

2. Дневник освоения практических навыков по общей и биоорганической химии. Учебно-методическое пособие для студентов медицинских вузов. – Ростов-на-Дону, Ростовский ГМУ. – 2012. – 174 с.

3. Ершов Ю.А., Попков В.А., Берлянд А.С. Общая химия. Биофизическая химия. Химия биогенных элементов. – М.:Юрайт. - 2012. – 560 с.

4. Ершов Ю.А. Коллоидная химия. Физическая химия дисперсных систем. М.: ГЭОТАР-Медиа. - 2014. – 352 с.

5. Медицинская химия: учеб. / В.А. Калибабчук, Л.И. Грищенко, В.И. Галинская и др.; под ред. В.А. Калибабчук. - К.: Медицина, 2008. – 400 с.

6. Общая химия: учебник. Попков В.А., Пузаков С.А. – М.: ГЭОТАР-Медиа. - 2010. - 976 с.

7. Ленский А.С., И.Ю. Белавин, С.Ю. Быликин. Биофизическая и бионеорганическая химия. – М.:МИА. – 2008. – 408 с.

 

 

Учебное пособие

 

З.И. Микашинович, Т.Д. Лосева, Н.Р. Телесманич,

Н.С. Ломаковский, О.Г. Саркисян, А.В. Летуновский,

Э.А. Решетникова, Т.Э. Харатян, Е.В. Ветрова

 

 


[1] Эссенциальный (от англ. essential — «необходимый) элемент - при его отсутствии или недостаточном поступлении в организм нарушается нормальная жизнедеятельность, прекращается развитие, становится невозможной репродукция. Восполнение недостающего количества такого элемента устраняет клинические проявления его дефицита и возвращает организму жизнеспособность.

 

2 НАД - никотинамидадениндинуклеотид

[3] ФАД - флавинадениндинуклеотид

[4] УБХ - убихинон





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 608 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2472 - | 2169 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.