Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Задача определения максимального потока




Рассматривается сеть с одним узлом входа (источник) и одним узлом выхода (сток). Какова максимальная величина потока (количество машин, сообщений, жидкости и т.д.), который может войти в сетевую систему и выйти из нее в заданный период времени? При этом предполагаем, что поток, вытекающий из узла, равен потоку, втекающему в узел.

Под пропускной способностью (мощностью) дуги будем понимать верхнее ограничение на поток в этой дуге. Мощность потока может зависеть от его направления. Условное изображение в сети

Означает, что мощность потока от узла 1 к узлу 2 равна 6, а мощность от 2 к 1 равна 0.

Алгоритм определения максимального потока:

  1. Найти какой-либо путь от источника до стока, который образован дугами, каждая из которых имеет в направлении потока ненулевую мощность. Если такого пути нет, то оптимальное решение найдено.
  2. Найти наименьшее значение мощности дуги Р на выбранном пути шага 1. Увеличить поток через сеть на величину Р.
  3. На пути из шага 1 сократить на Р мощности потоков на всех дугах в направлении потока и увеличить на Р мощности потоков на всех дугах в обратном направлении. Перейти к шагу 1.

Пример. Система автодорог «Север-Юг», проходящих через Псковскую область, может обеспечить пропускные способности, показанные на приводимой ниже схеме (тыс. автомашин в час).

Каков максимальный поток через эту систему (тыс. автомашин в час)? Сколько автомашин должно проехать по дороге 5-6, чтобы обеспечить максимальный поток?

Искомую величину максимального потока положим равной нулю.

Выбираем путь 1-3-6. Р=min(6,2)=2. Поэтому мощности потоков на пути 1-3-6 в направлении потока уменьшаем на величину Р=2, а мощности потоков в обратном направлении на пути 1-3-6 увеличим на Р=2. Общий поток станет 0+2=2. Получим:

Выбираем путь 1-4-6. Р=min(3,3)=3. Все потоки на пути 1-4-6 в направлении общего потока уменьшаем на 3, а в обратном направлении увеличиваем на 3. Общий поток увеличиваем на 3. Итого, 2+3=5. Получим:

Выбираем путь 1-2-5-6. Р=min(2,4,6)=2. Все потоки на пути 1-2-5-6 в направлении общего потока уменьшаем на 2, в обратном увеличиваем на 2. Общий поток увеличиваем тоже на 2. Итого 5+2=7. Получим:

Выбираем путь 1-3-4-5-6. Р=min(4,3,1,4)=1. Все потоки на пути 1-3-4-5-6 в направлении общего потока (4,3,1,4) уменьшаем на величину Р=1, а все потоки на этом пути в обратном направлении увеличиваем на Р=1. Итого, общий поток 7+1=8. Получим:

Выбираем путь 1-3-4-2-5-6. Р=min(3,2,1,2,3)=1. В прямом направлении уменьшаем на 1, в обратном увеличиваем на 1. Общий поток равен 8+1=9. Получим:

Больше не существует путей из узла 1 в узел 6 с мощностью, превышающей 0 на всем пути (Р=0). Следовательно, 9 тыс. – это максимальный поток через сеть.

Определим теперь величину и направление потока на каждой дуге, чтобы достичь максимального потока в 9 тыс. автомобилей. Поток проходит по дуге с величиной, равной разнице между первоначальной и конечной мощностями потока. Так, первоначальная мощность дуги 1-2 равна 2, а конечная – 0. Тогда в направлении от узла 1 к узлу 2 поток имеет мощность 2-0=2. Сравнивая конечные и начальные мощности потока для всех дуг сети, мы получаем конечную модель потоков.

Задача.

Чему равен максимальный поток автомашин для системы автодорог? Рассматривается возможность введения секции 3-4 с пропускной способностью 3 тыс. автомашин в час. На сколько увеличится величина максимального потока автомашин?

 

 

Литература

Просветов Г.И. Дискретная математика: задачи и решения. – М.: БИНОМ. Лаборатория знаний, 2011.

Канцедал С.А. Дискретная математика: учеб. Пособие. – М.:ИД «ФОРУМ»: ИНФРА-М, 2011.

Стол Р.Р. Множества. Логика. Аксиоматические теории. – М.: Просвещение, 1968.

Андерсон Дж. А. Дискретная математика и комбинаторика. – М.: Вильямс, 2003.

Асеев Г.Г., Абрамов О.М., Ситников Д.Э. Дискретная математика. – Ростов н/Д: Феникс, Харьков: Торсинг, 2003.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 4994 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2745 - | 2729 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.