Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


А) Цепные и базисные индексы




При расчете отдельно взятого индекса веса в числителе и знаменателе относятся к одному и тому же периоду, т.е. всегда одинаковы.

Пусть, например, за ряд периодов имеются данные о каком-то единичном показателе:

 

Периоды I II III IV V
Уровни y1 y2 y3 y4 y5

 

В этом случае, веса в вычисляемых индексах могут быть как постоянными (т.е. у всех индексов относящихся к одному периоду), так и переменными (т.е. изменяющиеся от периода к периоду).

Примем за базу сравнения y1, тогда для периодов II, III, IV, V индексы последовательно будут выражены (с постоянной базой) следующим образом:

 

.

 

Полученный ряд индексов называется базисными индексами (или коэффициентами роста с постоянной базой).

Теперь будем исчислять ряд индексов как отношение двух соседних уровней. Тогда для периодов II, III, IV, V индексы последовательно будут выражены (с переменной базой) следующим образом:

 

.

Полученный ряд индексов называется цепными индексами.

Нетрудно заметить, что

 

 

Цепные и базисные индексы с постоянными весами – соизмерителями находятся в следующей взаимосвязи:

1) произведение цепных индексов дает базисный индекс (последнего периода)

 

;

 

2) деление последующего базисного индекса на предыдущий базисный индекс дает цепной индекс (последующего периода), т.е.

 

.

 

Отмечая эту взаимосвязь между цепными и базисными индексами следует иметь в виду, что она должна использоваться с определенными оговорками: для индивидуальных индексов эта взаимосвязь выполняется всегда (безусловно), а для общих индексов будет иметь место только тогда, когда ряд общих индексов рассчитан по одним и тем же весам (т.е. для так называемых индексов с постоянными весами).

Как видели в п. 10.3 настоящей темы, все индексы объемных (количественных) показателей исчисляются по весам – соизмерителям базисного периода, т.е. с постоянными весами. Поэтому к таким индексным рядам указанная взаимосвязь имеет безусловный характер.

В индексном ряду с постоянными весами значительно легче изменять базу расчета.

В то же время все индексы качественных показателей исчисляются по весам – соизмерителям отчетного периода, т.е. являются индексами с переменными весами. Для таких индексных рядов указанная взаимосвязь не выполняется. Однако в статистических исследованиях иногда приходится прибегать к перемножению цепных индексов с переменными весами для того, чтобы получить базисный индекс. При этом вследствие системы переменных весов результат содержит некоторую ошибку. Величина этой ошибки определяется расхождением двух разновзвешенных индексов:

 

.

 

Количественно эта ошибка зависит от:

А) коэффициентов вариации индивидуальных индексов «р»;

Б) вариации индивидуальных индексов «g»;

В) а также от тесноты зависимости (коэффициента корреляции) между индивидуальными индексами «р» и «g».

Чем меньше будет каждая из этих величин, тем меньше будет их произведение, а, следовательно, ошибка в оценке величины базисного индекса путем перемножения цепных индексов с переменными весами.





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 778 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2227 - | 2155 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.