Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Загальна дисперсія ,міжгрупова та внутрішнлогрупова дисперсія




Відповідно до моделі однофакторного дисперсійного аналізу необхідно визначити дві дисперсії, а саме: міжгрупову (дисперсію групових середніх), зумовлену впливом досліджуваного фактора на ознаку Х, і внутрішньогрупову, зумовлену впливом інших випадкових факторів.

Загальна дисперсія розглядається як сума квадратів відхилень:

.

оді поділ загальної дисперсі ї на компоненти здійснюється так:

 

оскільки

 

Таким чином, дістаємо:

Для того щоб мати виправлені дисперсії, необхідно кожну зі здобутих сум поділити на число ступенів свободи.

Так, для загальної дисперсії виправлена дисперсія дорівнюватиме .

Виправлена дисперсія , що характеризує розсіювання всередині групи, зумовлене впливом випадкових факторів, обчислюється за формулою: ,

де є числом ступенів свободи для , оскільки при цьому використовується р співвідношень при обчисленні групових середніх

 

Виправлена дисперсія , що характеризує розсіювання групових середніх відносно загальної середньої , яке викликане впливом фак­тора на результат експерименту ознаки Х, обчислюється за формулою:

,

де — це число ступенів свободи для , оскільки групові середні варіюють відносно однієї загальної середньої .


62) Загальний метод перевірки впливу фактора на ознаку способом порівняння дисперсій. Завдання виявлення впливу фактора на наслідки експерименту полягає в порівнянні виправлених дисперсій , . І справді, якщо досліджуваний фактор не впливає на значення ознаки Х, то в цьому разі і можна розглядати як незалежні оцінки загальної дисперсії D. І навпаки, якщо відношення i істотне, то в цьому разі вибірки слід вважати здійсненими з різних сукупностей, тобто з сукупностей з різним рівнем впливу фактора.

Порівняння двох дисперсій ґрунтується на перевірці правильності нульової гіпотези: — про рівність дисперсій двох вибірок.

За статистичний критерій вибирається випадкова величина ,

що має розподіл Фішера—Снедекора з , ступенями свободи.

За значеннями a, , , знаходимо критичну точку (додаток 7).

Спостережуване значення критерію обчислюється за формулою

Якщо , то нульова гіпотеза про вплив фактора на результати досліджень відхиляється, а коли , то цим самим підтверджується вплив фактора на ознаку Х.

Результати спостережень та обчислення статистичних оцінок зручно подати в упорядкованому вигляді за допомогою табл. 2.

63) Двофакторний дисперсійний аналіз. Нехай необхідно визначити вплив двох факторів А і В на певну ознаку Х. Для цього необхідно, щоб дослід здійснювався при фіксованих рівнях факторів А і В, а також їх одночасній дії на ознаку. При цьому дослід здійснюватимемо n раз для кожного з рівнів факторів А і В.

Позначимо через конкретне значення ознаки Х, якого вона набуває при i -му експерименті, j -му рівні фактора A і k -му рівні фактора В.

Результат експерименту зручно подати у вигляді таблиці, яка поділена на блоки, в кожному з яких ураховується на певних рівнях факторів А і В їх вплив на конкретні значення ознаки





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 684 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2311 - | 2015 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.