Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Правила выполнения и оформления контрольных работ




 

При выполнении контрольных работ необходимо строго придер-живаться указанных ниже правил. Работы, выполненные без соблю-дения этих правил, не зачитываются и возвращаются студенту для переработки.

1. Каждая контрольная работа должна быть выполнена в отдельной тетради в клетку чернилами любого цвета, кроме красного. Необходимо оставлять поля шириной 4–5 см для замечаний рецензента.

2. В заголовке работы на обложке тетради должны быть ясно написаны фамилия студента, его инициалы, учебный номер (шифр), название дисциплины, номер контрольной работы, номер варианта; здесь же следует указать название учебного заведения, дату отсылки работы в университет и адрес студента. В конце работы следует поставить дату ее выполнения и подпись студента.

3. В работу должны быть включены все задачи, указанные в задании, строго по положенному варианту. Контрольные работы, содержащие не все задачи, а также задачи не своего варианта, не зачи-тываются.

4. Решения задач надо располагать в порядке возрастания их номеров, указанных в заданиях, сохраняя номера задач.

5. Перед решением каждой задачи надо полностью выписать ее условие. В том случае, если несколько задач, из которых студент выбирает задачи своего варианта, имеют общую формулировку, сле-дует, переписывая условие задачи, заменить общие данные конкрет-ными, взятыми из соответствующего номера.

Условие задачи должно быть написано так:

 

Найти работу, произведенную силой , если ее точка приложения перемещается из точки в точку .

 

Р е ш е н и е

______________________________________________

 

Ответ: А = 10.

 

6. Решения задач следует излагать подробно и аккуратно, кратко и лаконично объясняя и мотивируя все действия по ходу решения и делая необходимые чертежи. Каждую задачу желательно начинать с новой страницы.

7. После получения прорецензированной работы, как не зачтенной, так и зачтенной, студент должен исправить все отмеченные рецензентом ошибки и недочеты и выполнить все рекомендации рецензента.

Если рецензент предлагает внести в решение задач те или иные исправления и дополнения, то в случае не зачтенной контрольной работы ее следует представить на повторную рецензию в короткий срок.

При повторном представлении работы должна обязательно нахо-диться прорецензированная работа и рецензия на нее. Поэтому при выполнении контрольной работы рекомендуется оставлять в конце тетради несколько чистых листов для всех дополнений и исправлений в соответствии с указаниями рецензента.

 

ПРОГРАММА

 

Элементы линейной алгебры

И аналитической геометрии

 

1. Системы координат на прямой, плоскости и в пространстве. Про-странства и . Векторы. Линейные операции над векторами. Проекция вектора на ось. Направляющие косинусы и длина вектора. Понятие о векторных диаграммах в науке и технике (диаграммы сил, моментов сил, электрических токов, напряжений и др.). Координаты центра масс.

2. Скалярное произведение векторов и его свойства. Длина вектора и угол между двумя векторами в координатной форме. Условие ортогональности двух векторов. Механический смысл скалярного произведения.

3. Определители второго и третьего порядков, их свойства. Алгебраические дополнения и миноры. Определители n -го порядка. Вы-числение определителя разложением по строке (столбцу).

4. Векторное произведение двух векторов, его свойства. Условие коллинеарности двух векторов. Геометрический смысл определителя второго порядка. Простейшие приложения векторного произведения в науке и технике: моменты сил, сила, действующая на проводник с током в магнитном поле, скорость точки вращающегося тела, направление распространения электромагнитных волн.

5. Смешанное произведение векторов. Геометрический смысл оп-ределителя третьего порядка.

6. Уравнения линий на плоскости. Различные формы уравнения прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой.

7. Кривые второго порядка: окружность, эллипс, гипербола, пара-бола, их геометрические свойства и уравнения. Технические прило-жения геометрических свойств кривых (использование фокальных свойств, математические модели формообразования биологических, технических и других объектов).

8. Уравнения плоскости и прямой в пространстве. Угол между плос-костями. Угол между прямыми. Угол между прямой и плоскостью.

9. Уравнение поверхности в пространстве. Цилиндрические поверхности. Сфера. Эллипсоид. Гиперболоиды. Параболоиды. Геомет-рические свойства этих поверхностей, исследование их формы методом сечений. Технические приложения геометрических свойств поверхностей (использование фокальных свойств, модели строитель-ных конструкций, физические модели элементов и т.п.).

10. Полярные координаты на плоскости. Спираль Архимеда.

11. Цилиндрические и сферические координаты в пространстве. Различные способы задания линий и поверхностей в пространстве.

12. Матрицы, действия с ними. Понятие обратной матрицы.

13. Системы двух и трех линейных уравнений. Матричная запись системы линейных уравнений. Правило Крамера. Система m линейных уравнений с n неизвестными. Метод Гаусса. Нахождение обратной матрицы методом Гаусса.

14. Пространство . Линейные операции над векторами. Различ-ные нормы в . Скалярное произведение в .

15. Линейные и квадратичные формы в . Условие знакоопределенности квадратичной формы.

16. Понятие линейного (векторного) пространства. Вектор как эле-мент линейного пространства. Примеры. Линейные операторы. При-меры линейных операторов. Применение линейных операторов для моделирования различных процессов.

 

Введение в математический анализ

 

17. Элементы математической логики: необходимое и достаточное условия. Прямая и обратная теоремы. Символы математической логики, их использование. Бином Ньютона. Формулы сокращенного умножения.

18. Множество действительных чисел. Функция. Область ее определения. Способы задания. Основные элементарные функции, их свойства и графики.

19. Числовые последовательности, их роль в вычислительных процессах. Предел числовой последовательности. Стабилизация десятичных знаков у членов последовательности, имеющей предел. Существование предела монотонной ограниченной последовательности.

20. Сложные и обратные функции, их графики. Класс элементар-ных функций.

21. Предел функции в точке. Предел функции в бесконечности. Пределы монотонных функций.

22. Непрерывность функций в точке. Непрерывность основных эле-ментарных функций.

23. Бесконечно малые в точке функции, их свойства. Сравнение бесконечно малых. Символы о и О.

24. Свойства функций, непрерывных на отрезке: ограниченность, существование наибольшего и наименьшего значений, существование промежуточных значений.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 384 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2333 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.