Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методы обеспечения устойчивости алгоритмов обнаружения сигнала




Ранее мы считали, что a priori известны:

1. условные совместные плотности распределения шума и аддитивной смеси сигнала и шума ,

2. вероятности отсутствия сигнала в наблюдаемой реализации сигнала и наличия в ней сигнала ,

3. платежная матрица с элементами - расходы на принятие правильные решения и - плата за ошибки первого и второго рода.

В общем случае неопределенными могут быть любые данные.

Если неизвестны только параметры совместных плотностей распределения, то говорят о параметрической априорной неопределенности.

Если же заранее неизвестны сами плотности распределения, то говорят о непараметрической неопределенности.

Неизвестные параметры, существенные для формулировки задачи, считаются полезными, остальные – мешающими. Так, в задаче обнаружения гармонического сигнала на фоне помех, полезным параметром является амплитуда колебания, а частота и фаза – это несущественные, мешающие параметры.

1. Первые попытки преодоления априорной неопределенности были сделаны еще в рамках классического байесовского подхода. Неизвестные параметры функций распределения помехи и смеси помехи и сигнала трактовались как случайные величины с известными распределениями. В этом случае приходится усреднять по этим неизвестным параметрам и отношение правдоподобия, и ошибки обнаружения, и средний риск, связанный с ошибками обнаружения.

2. Если нет априорных сведений о величинах потерь, то есть неизвестна платежная матрица, и неизвестны априорные вероятности наличия или отсутствия сигнала в исходной выборке, то поступают следующим образом:

- потери, связанные с принятием правильных решений, принимаются равными нулю (),

- потери, связанные с принятием ошибочных решений, считаются одинаковыми,

- априорные вероятности наличия или отсутствия сигнала, принимаются одинаковыми ().

Но вид плотностей распределения должен быть известен с точностью до полезных параметров. Вариации мешающих параметров делают алгоритм неустойчивым. Эффективность применения алгоритма становится зависящей от значений мешающих параметров.

3. Одним из самых распространенных критериев в задачах обнаружения сигналов является критерий Неймана – Пирсона.

Сущность его заключается в том, что из всех возможных алгоритмов выбирают тот, при котором обеспечивается максимум вероятности правильного обнаружения сигнала при условии, что вероятность ложной тревоги не превысит некоторого заданного значения .

В случае параметрической априорной неопределенности стараются выбрать такое правило принятия решения, которое, при заданном , обеспечивало бы максимум мощности при любых значениях параметров сигнала и шума. Такие алгоритмы называются равномерно наиболее мощными. Они, правда, существуют далеко не всегда.

4. Для получения приемлемого решения в предыдущих условиях часто приходится ограничиваться только такими алгоритмами, для которых . Такие алгоритмы называются несмещенными.

5. В непараметрическом случае, когда неизвестны даже априорные плотности распределения, а известно лишь, что они существенно отличаются от нормального распределения, обычно применяется следующий подход: ищут такие статистики, то есть такие функции выборочных значений принимаемого сигнала, которые бы в широких пределах не зависели от распределения значений шума. Так в примере мы использовали среднее арифметическое из имеющихся выборочных значений. Его распределение можно считать нормальным независимо от распределения выборки в широком классе симметричных распределений.

6. Синтез оптимальных непараметрических алгоритмов обнаружения связан с практически непреодолимыми математическими трудностями. Решить проблему удается лишь в асимптотических случаях, когда число отсчетов сигнала стремится к бесконечности. В этом случае отношение правдоподобия оказывается величиной, распределенной нормально и поэтому непараметрическая неопределенность переходит в параметрическую.

7. Промежуточное положение между параметрическими и непараметрическими алгоритмами обнаружения сигналов в условиях априорной неопределенности занимают робастные алгоритмы. Основная идея их применения связана с тем, что распределение выборочных данных хотя и неизвестно, но не может быть произвольным. О нем всегда имеется хотя бы некоторая информация. Это позволяет найти множество возможных распределений шума и построить алгоритм, минимизирующий максимальное ухудшение качества обнаружения сигнала на этом множестве распределений.

 

 


[1] Здесь под функцией векторов понимается просто функция многих переменных – компонент этих векторов. Эти компоненты для удобства просто собраны в отдельные группы, которые и рассматриваются как вектора.

 





Поделиться с друзьями:


Дата добавления: 2015-10-21; Мы поможем в написании ваших работ!; просмотров: 666 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2272 - | 2124 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.