Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Патофизиология углеводного обмена




Углеводы, будучи природными органическими соединениями (альдегидо- и кетоспирты или продукты их конденсации), являются основным быстро мобилизуемым энергетическим источником в питании человека. На их долю приходится более 50% калорийности пищи и 75 % веса суточного рациона. Энергетические потребности углеводистой пищи восполняются за счет полисахаридов – гликогена животных продуктов, крахмала растений (резервный полисахарид, подобный по структуре гликогену животных), дисахаридов – сахарозы, лактозы, мальтозы и других, а также моносахаров глюкозы, фруктозы и др. В составе гликогена клетки организма запасают энергию в качестве быстро мобилизуемого резерва (до 300 г в печени и мышцах). Не будь этой формы резервирования глюкозы, её накопление в цитоплазме приводило бы к гиперосмолярности и гипергидратации клеток. Гликоген тканей относительно быстро обновляется в связи с высокой потребностью в углеводах, особенно при физических нагрузках.

Кроме энергетической, важна структурно-пластичекая роль углеводов. Так, основу межклеточного вещества соединительной ткани составляют гликозаминогликаны. Множество белков нашего организма, в том числе энзимы, транспортёры, гормоны, являются гликопротеидами. Триозы необходимы для производства липидов, пентозы – нуклеиновых кислот. Углеводы являются частью антигенной среды организма. Они входят в состав гликолипидных, гликопептидных и полисахаридных антигенов. Комплекс Гольджи и внутритранспортные клеточные системы используют для маркировки и сортировки молекул полисахаридный код. Ряд медиаторов воспаления имеет полисахаридное строение, а глюкурониды участвуют в детоксикации эндогенных ядов и ксенобиотиков. Углеводы не относятся к незаменимыми компонентами пищи. Единственным производным углеводов, которое вводится в организм извне, является витамин С. Остальные сахариды могут синтезироваться из липидов и аминокислот.

Исключение углеводов из пищи может приводить к пищевой углеводной недостаточности. Это состояние сопровождается компенсаторным глюконеогенезом с повышением образования кислых эквивалентов и азотистых продуктов распада и развитием кетоацидоза и катаболизма белка. Дефицит углеводов тормозит образование печенью парных соединений с глюкуроновой кислотой, что снижает антитоксическую резистентность. Введение углеводов улучшает детоксикационную функцию печени. Стресс, обеспечивающий, например, адаптацию организма к гипоксии, в значительной мере основан на мобилизации и ускоренном поступлении глюкозы в ткани.

Нельзя не учитывать и пищевую роль углеводов. Сбалансированная диета взрослого человека должна содержать примерно 124 г углеводов на каждые 1000 ккал суточного рациона. В рационе питания должно присутствовать до 25 % легкоусвояемых дисахаридов. Если меню перегружено ими, возрастает риск заболеть ожирением, атеросклерозом, возможно развитие относительной недостаточности ряда расходуемых для утилизации углеводов витаминов (В1, В2, РР, липоевой кислоты), повышенной потребности в белках и микроэлементах Mn, Mg, Mo, Fe.

Патология углеводного обмена может быть представлена совокупностью нарушений катаболических и анаболических превращений сахаров, поступающих с пищей в виде растительных и животных продуктов, суточная потребность в которых составляет 350-500 г. Нарушения катаболизма углеводов могут возникать в результате расстройств:

1) пищеварения, т.е. расщепления углеводов (например, мальабсорбция, мальдигестия),

2) их всасывания в ЖКТ, в т.ч. ротовой полости,

3) межуточного обмена сахаров,

4) образования конечных продуктов превращения углеводов, т.е. воды и углекислого газа.

Нарушения анаболизма сахаров проявляется изменениями синтеза и депонирования гликогена (гликогенез), глюконеогенеза, перехода углеводов в жиры. Таким образом, расстройства углеводного обмена могут наблюдаться на всех этапах превращений сахаров – расщепления, всасывания, синтеза и ресинтеза, межуточного обмена. На заключительном этапе превращения моносахаров подобные нарушения сопрягаются с расстройствами гликолиза, тканевого дыхания и окислительного фосфорилирования, которые обсуждаются в разделе «Гипоксия».

На этапе гидролиза полисахаридов нарушения углеводного обмена могут быть обусловлены:

1) Заболеваниями слизистой оболочки различных отделов ЖКТ (ротовой полости, тонкой кишки).

2) Патологии секреторных органов ЖКТ:

· слюнных желез (дефицит альфа-амилазы, мальтазы),

· желез слизистой тонкой кишки,

· поджелудочной железы (дефицит олиго- и полисахаридаз, а также оптимальное значение среды химуса),

· печени (формирование слабощелочной среды).

3) Нарушениями нейрогуморальной регуляции образования и выделения секретов.

4) Врожденными и приобретенными энзимопатиями.

5) Голоданием.

6) Общими поражениями организма:

· лихорадка,

· перегревание,

· обезвоживание.

На этапе всасывания моносахаров из ЖКТ патология углеводного обмена может быть связана с такими факторами, как

1) нарушения нервной регуляции секреторного процесса, в результате чего идет неполное расщепление полисахаров,

2) нарушения эндокринно-гормональной регуляции (изменения секреции инсулина, глюкокортикоидов и других гормонов),

3) врожденных и приобретенных энзимопатий:

· дефицит гексокиназы – фермента, который обеспечивает процесс фосфорилирования и образование глюкозо-6-фосфата;

· фосфорилазы и фосфатазы, которые обеспечивают дефосфорилирование глюкозо-6-фосфата;

· отсутствие глюкозо-6-фосфатазы ведет к нарушению превращений молочной кислоты в пировиноградную.

Если инсулин активирует гексокиназу и тормозит глюкозо-6-фосфатазу, то глюкокортикоиды обладают противоположным действием. Глюкагон и адреналин активируют фосфорилазу печени и мышц (подробнее см. ниже). Таким образом, гуморальные и нервные механизмы играют едва ли не самую существенную роль в регуляции углеводного обмена уже на этапах образования и всасывания моносахаров. Поэтому напомним о тех гормонах, которые принимают участие в регуляции углеводного обмена.

В зависимости от того, как они влияют на содержание глюкозы в крови, их классифицируют на две группы: 1) контринсулярные гормоны, повышающие содержание глюкозы, 2) инсулин, снижающий уровень сахара. Инсулин усиливает проницаемость клеточных мембран, способствуя переходу глюкозы в клетки. Внутри клетки он активирует все пути превращения глюкозы: гликолиз, тканевое дыхание, превращение в пентозофосфатном цикле, гликогенез, липогенез. Кроме того, как уже упоминалось, инсулин активирует гексокиназу и тормозит глюкозо-6-фосфатазу.

К контринсулярным гормонам относят адреналин, глюкагон, глюкокортикоиды, СТГ и тироксин. Глюкагон, глюкокортикоиды, тироксин и адреналин активируют фосфорилазу и глюкозо-6-фосфатазу, СТГ и тироксин – инсулиназу; глюкокортикоиды тормозят активность гексокиназы, стимулируют глюконеогенез (образование глюкозы) из аминокислот и лактата; адреналин и глюкагон стимулируют гликогенолиз. Все отмеченные выше эффекты контринсулярных гормонов, в конечном счете, повышают содержание глюкозы в крови выше 6,1, реально выше 5,55 ммоль/л, вызывая гипергликемию.

Нарушение поступления глюкозы рассматривалось выше – это состояние пищевой углеводной недостаточности. В качестве причин могут выступать голод, несбалансированное питание, отсутствие надлежащего ухода и кормления больных определённого профиля.

Нарушение переваривания и всасывания определяются анаболическими и катаболическими реакциями углеводов. Некоторые авторы, описывая этапы обмена углеводов, применяют термины анаболические и катаболические реакции. К анаболическим реакциям относят гликогенез и глюконеогенез, к катаболическим – внутриполостное переваривание, гликогенолиз, гликолиз, пентозофосфатное окисление.

Полисахариды перевариваются a-амилазой слюны, которая продолжает действовать внутри пищевого комка в желудке до тех пор, пока содержимое пищевого комка не станет компонентом кислого химуса. Основная масса углеводов пищи расщепляется в ЖКТ панкреатической a-амилазой. В результате гидролиза полисахаридов в кишечнике оказывается смесь мальтозы, изомальтозы и глюкозы. При экскреторной недостаточности поджелудочной железы процесс переваривания нарушается, и в фекалиях обнаруживаются зёрна крахмала – «амилорея». Целлюлоза и растительные пентозы гидролизу не подвергаются и попадают в толстый кишечник, где частично деградируют с образованием органических кислот, спиртов и СО2. Полученные продукты важны как стимуляторы перистальтики и участники эубактериоза.

Гидролиз олигосахаридов и продолжается в тонкой кишке (вплоть до подвздошной) под действием олигосахаридаз (сахараза, мальтаза, лактаза, b-галактозидаза и другие). Олигосахаридазы локализованы на мембранах энтероцитов и предназначены для мембранного и внутриклеточного пищеварения. Их активность представлена в щёточной кайме и внутри энтероцитов. Поэтому нарушения расщепления сопрягаются с расстройствами мембранного переваривания, всасывания и ранними стадиями межуточного обмена, представленных синдромом мальабсорбции. Среди них следует назвать наследственные и приобретенные формы глюкозо-галактозной мальабсорбции (дефицит натрий-зависимого ко-транспорта глюкозы и галактозы кишечника), алактазии (дефицит лактазы), галактоземии (дефицит ферментов превращения галактозы), фруктозурии (отсутствие альдолазы фруктозо-1-фосфата), пентозурии. Некоторые из них весьма распространены (например, алактозия), другие приводят к опасным для жизни последствиям.

Нормальные моносахаридные продукты как результат адекватной активности олигосахаридаз – галактоза, глюкоза, фруктоза и другие, всасываются в кровь. Галактоза, фруктоза и глюкоза поступают в энтероциты с помощью натрий-зависимого активного транспорта. Ион [Na+] входит в энтероцит по градиенту, обеспечивая всасывание моносахаров против градиента. Калий-натриевый насос, функционирующий с затратой АТФ, восстанавливает натрий-калиевый градиент. Многие яды моделируют процесс нарушения натрий-зависимого активного всасывания моносахаридов (флоридзин, уабаин). Причина этого заболевания – мутация гена натрий-зависимого флоридзин-чувствительного переносчика глюкозы и галактозы в хромосоме 6.

В энтероцитах, нефроцитах, гепатоцитах глюкоза подвергается фосфорилированию с помощью фермента гексокиназы и в форме глюкозо-6-фосфата удерживается в клетке, создавая градиент ее концентрации. Из энтероцитов глюкоза с помощью белков переносчиков (GluT-ов) поступает в кровь, предварительно освободившись от фосфата под действием фермента фосфатазы. Остальные моносахариды всасываются с помощью облегчённого транспорта, который может подключаться и к абсорбции выше названных трёх моносахаридов, если их количество в просвете кишки велико.

Дальнейшее поступление глюкозы в клетки из крови определяется белками-переносчиками. Их обозначают «GluT-ами» и нумеруют по порядку их обнаружения. На сегодняшний день известно 5 белковых переносчиков. GluT-1 предназначены для поступления глюкозы через эндотелиоциты в мозг, GluT-2 – для поступления глюкозы в кровь из гепатоцитов, энтероцитов и нефроцитов. Именно при участии GluT-2 глюкоза переходит в кровь из энтероцитов после её всасывания. GluT-3 имеется в нейронах мозга и обладает большим сродством к глюкозе. GluT-4 – главный переносчик глюкозы в мышцах и адипоцитах. 80 % утилизируемой глюкозы в условиях глюкозной нагрузки приходится на клетки инсулинозависимых тканей – гепатоцитов, миоцитов, адипоцитов, клеток соединительной ткани, в которых глюкоза превращается в гликоген. Среди остальных есть переносчики глюкозы (не GluT), транспортирующие ее как по механизму активного транспорта (т.е. против концентрационного градиента), так и по градиенту концентрации (перенос моносахаров из кишечника и первичной мочи). Функция переносчиков контролируется гормонами и, в первую очередь, инсулином. Наиболее существенным ответом на инсулин считается реакция GluT-4 мышечной и жировой тканей.

Нарушение синтеза и депонирования гликогена (гликогенез) наблюдается вследствие торможения гексокиназных реакций при дефиците инсулина, миастении, гипо- и авитаминозах, гипоксии, некоторых эндокринопатиях (СД, гиперкортицизм, тиреотоксикоз). Депонирование гликогена и усиление гликогенолиза расстраивается в результате охлаждения, перегревания, болевого синдрома, судорог, стресса, гипоксии, гепатитов, инфекций и интоксикаций, голодания, различных видов шока, под действием катехоламинов, глюкагона и тиреоидных гормонов.

Нарушение расщепления гликогена (гликогенолиза) наблюдается при гликогенозах (см. ниже). Усиленный распад гликогена отмечается при возрастании энергозатрат организма (стресс, физическая нагрузка, ацидоз и т.п.), в том числе под действием гормонов (катехоламины, глюкагон, СТГ и др.)





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 565 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2326 - | 2158 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.