Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Вращательное движение твердых тел




Основные законы и формулы

· Момент инерции материальной точки

,

где – масса точки; – расстояние до оси вращения.

· Момент инерции механической системы (тела) относительно неподвижной оси

,

где – расстояние материальной точки массой до оси вращения; в случае непрерывного распределения масс

.

· Моменты инерции тел правильной геометрической формы (тела считаются однородными; – масса тела):

 

Тело Положение оси вращения Момент инерции
Обруч или полый тонкостенный цилиндр радиусом Ось симметрии
Сплошной цилиндр или диск радиусом Ось симметрии
Прямой тонкий стержень длиной Ось перпендикулярна стержню и проходит через его середину
Прямой тонкий стержень длиной Ось перпендикулярна стержню и проходит через его конец
Шар радиусом Ось проходит через центр шара

 

· Теорема Штейнера

,

где – момент инерции тела относительно оси, прохо­дящей через центр масс; – момент инерции относи­тельно параллельной оси, отстоящей от первой на рас­стоянии ; – масса тела.

· Момент силы относительно неподвижной точки

,

где – радиус-вектор, проведенный из этой точки в точ­ку приложения силы . Модуль момента силы относительно неподвижной оси

,

где – плечо силы (кратчайшее расстояние между ли­нией действия силы и осью вращения).

· Основной закон динамики вращательного дви­жения твердого тела

,

где – момент сил, приложенных к телу; момент инерции тела относительно оси вращения; – угловая скорость тела.

· Уравнение (закон) динамики вращательного дви­жения твердого тела относительно неподвижной оси

,

где – угловое ускорение; – момент инерции тела относительно оси z.

· Момент импульса (момент количества движения) твердого тела относительно оси вращения

,

где – расстояние от оси до отдельной частицы тела; – импульс этой частицы; – момент инерции те­ла относительно оси ; – его угловая скорость.

· Закон сохранения момента импульса для замкнутой системы

.

· Работа при вращательном движении тела

,

где – угол поворота тела; – момент силы относи­тельно оси .

· Кинетическая энергия тела, вращающегося вокруг неподвижной оси ,

,

где – момент инерции тела относительно оси ; – его угловая скорость.

· Кинетическая энергия тела, катящегося по плоскости без скольжения,

,

где – масса тела; – скорость центра масс тела; – момент инерции тела относительно оси, проходя­щей через его центр масс; – угловая скорость тела.

· Связь работы и кинетической энергии тела при вращательном движении:

,

где момент инерции тела относительно оси вращения; угловая скорость тела в начальном состоянии; угловая скорость тела в конечном состоянии;

Задания

3.1. Определите момент инерции сплошного однородного диска радиусом 40 см и массой 1 кг относительно оси, проходящей через середину одного из радиусов и перпендикулярной плоскости диска. [0,12 кг×м2].

3.2. Определите момент инерции тонкого однородного стержня длиной 50 см и массой 360 г относительно оси, перпендикулярной стержню и проходящей через его конец. [3×10-2 кг×м2].

3.3. Определите момент инерции тонкого однородного стержня длиной 50 см и массой 360 г относительно оси, перпендикулярной стержню и проходящей через точку, от­стоя­щую от конца стержня на 1/6 его длины. [1,75×10-2 кг×м2; 4,75×10-2 кг×м2].

3.4. Тонкий обруч диаметром 56 см и массой 300 г висит на гвозде, вбитом в стену. Определите его момент инерции относительно этого гвоздя. [0,047 кг×м2].

3.5. Однородный шарик массой 100 г подвешен на нити, длина которой равна радиусу шарика. Определите момент инерции шарика относительно точки подвеса, если длина нити 20 см. [0,0176 кг×м2].

3.6. Определите момент инерции сплошного однородного цилиндра радиусом 20 см и массой 1 кг относительно оси, проходящей через образующую цилиндра. [0,06 кг×м2].

3.7. Однородный шар радиусом 10 см и массой 5 кг вращается вокруг оси симметрии согласно уравнению (В =2 рад/с2, С = -0,5 рад/с3). Определите момент сил для t = 3 с. [-0,1 Н×м].

3.8. Маховик в виде сплошного диска, момент инерции которого 150 кг×м2, вращается с частотой 240 об/мин. Через время t = 1 мин, после того как на маховик стал действовать момент сил торможения, он остановил­ся. Определите момент сил торможения и число оборотов маховика от начала торможения до полной ос­тановки. [62,8 Н×м; 120].

3.9. К ободу однородного сплошного диска ради­усом 0,5 м приложена постоянная касательная сила 100 Н. При вращении диска на него действует мо­мент сил трения 2 Н×м. Определите массу ди­ска, если известно, что его угловое ускорение постоян­но и равно 16 рад/с2. [24 кг].

3.10. Частота вращения маховика, момент инер­ции которого равен 120 кг×м2, составляет 240 об/мин. После прекращения действия на него вращающего мо­мента маховик под действием сил трения в подшипни­ках остановился за время t = 3,14 мин. Считая трение в под­шипниках постоянным, определите момент сил тре­ния. [16 Н×м].

3.11. Вентилятор вращается с частотой 600 об/мин. После выключения он начал вращаться равнозамедленно и, сделав 50 оборотов, остановился. Работа сил торможения равна 31,4 Дж. Определите момент сил торможения и момент инерции вентилятора. [0,1 Н×м; 15,9 кг×м2 ].

3.12. Маховик в виде сплошного диска, момент инер­ции которого 1,5 кг×м2, вращаясь при торможении равнозамедленно, за время t = 1 мин уменьшил частоту вращения с 240 до 120 об/мин. Определите угловое ускорение маховика и момент силы торможения. [0,21 рад/с2; 0,315 Н×м].

3.13. Однородный диск радиусом 0,2 м и массой 0,5 кг вращается вокруг оси, проходящей через его центр. Зависимость угловой скорости вращения диска от времени дается уравнением (В =8 рад/с2). Найдите величину касательной силы, приложенной к ободу диска. Трением пренебречь. [0,4 Н].

3.14. Маховик, момент инерции которого равен 63,6 кг×м2, вращается с постоянной угловой скоростью 31,4 рад/с. Найдите тормозящий момент, под действием которого маховик останавливается через 20 с. [100 Н×м].

3.15. Однородный стержень длиною 1 м и массой 0,5 кг вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через середину стержня. С каким угловым ускорением вращается стержень, если вращающий момент равен 9,81×10-2 Н×м? [2,35 рад/с2].

3.16. Через неподвижный блок в виде однородного сплошного цилиндра массой 160 г перекинута невесомая нить, к концам которой подвешены грузы массами 200 и 300 г. Пренебрегая трением в оси блока, определите ускорение грузов и силы натяжения. [1,69 м/с2; 2,3 Н; 2,44 Н].

3.17. На однородный сплошной ци­линдрический вал радиусом 50 см намотана легкая нить, к концу ко­торой прикреплен груз массой 6,4 кг. Груз, разматывая нить, опускается с ус­корением 2 м/с2. Определите мо­мент инерции и массу вала. [6,25 кг×м2; 50 кг].

3.18. На барабан массой 9 кг намотан шнур, к концу которого привязан груз массой 2 кг. Найдите ускорение груза. Барабан считать однородным диском. Трением пренебречь. [3 м/с2].

3.19. На барабан радиусом 0,5 м намотан шнур, к концу которого привязан груз массой 1 кг. Найдите момент инер­ции барабана, если известно, что груз опускается с ускорением 2,04 м/с2. [9,5 кг×м2].

3.20. Через неподвижный блок в виде однородного сплошного цилиндра массой 0,2 кг перекинута не­весомая нить, к концам которой прикреплены тела мас­сами 0,35 и 0,55 кг. Пренебрегая трением в оси блока, определите ускорение грузов и отноше­ние сил натяжения нити. [1,96 м/с2; 1,05].

3.21. Тело массой 0,25 кг, соединенное невесомой нитью посредством блока (в виде полого тонкостенного цилиндра) с телом массой 0,2 кг, скользит по поверхности горизонтального стола (см.рис. 3, с.15). Масса блока 0,15 кг. Коэффициент трения тела о поверхность равен 0,2. Пренебрегая трением в подшипниках, определите ускорение, с которым будут двигаться эти тела и силы натяжения нити по обе стороны блока. [2,45 м/с2;1,1 Н; 1,47 Н].

3.22. К ободу однородного сплошного диска массой 10 кг, насаженного на ось, приложена постоянная касательная сила 30 Н. Определите кине­тичес­кую энергию диска через 4 с после начала действия силы. [1,44 кДж].

3.23. Диск массой 2 кг катится без скольжения по горизонтальной плоскости со скоростью 4 м/с. Найдите кинетическую энергию диска. [24 Дж].

3.24. Шар диаметром 6 см катится без скольжения по горизонтальной плоскости, делая 4 об/с. Масса шара 0,25 кг. Найдите кинетическую энергию шара. [0,1 Дж].

3.25. Полная кинетическая энергия диска, катящегося по горизонтальной поверхности, равна 24 Дж. Определите кинетические энергии поступа­тельного и вращательного движений диска. [16 Дж; 8 Дж].

3.26. Шар и сплошной цилиндр одинаковой массы, изготовленные из одного и того же материала, катятся без скольжения с одинаковой скоростью. Определите, во сколько раз кинетическая энергия шара меньше кинетической энергии сплошного цилиндра. [в 1,07 раза].

3.27. Обруч и диск имеют одинаковую массу и катятся без скольжения с одинаковой линейной скоростью. Кинетическая энергия обруча равна 4 Дж. Найдите кинетическую энергию диска. [2 Дж].

3.28. Определите, во сколько раз полная кинетическая энергия обруча, скользящего вдоль наклонной плоскости, меньше полной кинетической энергии обруча, катящегося по наклонной плоскости. [в 2 раза].

3.29. Сплошной однородный диск скатывается без скольжения по наклонной плоскости, образующей угол с горизонтом. Определите линейное ускорение центра диска. [ ].

3.30. С наклонной плоскости, составляющей угол с горизонтом, скатывается шар. С каким ускорением движется центр шара? [ ].

3.31. Шар скатывается с наклонной плоскости высотой 90 см. Какую линейную скорость будет иметь центр шара в тот момент, когда шар скатится с наклонной плоскости? [3,5 м/с].

3.32. С наклонной плоскости, составляющей угол 30° к горизонту, скатывается без скольжения шарик. Пренебрегая трением, определите время движения шари­ка по наклонной плоскости, если известно, что его центр масс при скатывании понизился на 30 см. [0,585 с].

3.33. Колесо радиусом 30 см и массой 3 кг скатывается без трения по наклонной плоскости длиной 5 м и углом наклона 30°. Определите момент инерции колеса, если его скорость в конце движения составляла 4 м/с. [0,057 кг×м2].

3.34. Вертикальный столб высотой 5 м, подпиленный у основания, падает на землю. Определите линейную и угловую скорости его верхнего конца в момент удара о землю. [12 м/с; 2,4 рад/с].

3.35. По горизонтальной плоской поверхности катится диск со скоростью 8 м/с. Определите коэффициент сопротивления, если диск, будучи предоставленным самому себе, остановился, пройдя путь 18 м. [0,27].

3.36. Шар массой 3 кг катится со скоростью 2 м/с и сталкивается с покоящимся шаром массой 5 кг. Какая работа будет совершена при деформации шаров? Удар считать абсолютно неупругим, прямым, центральным. [- 6,15 Дж].

3.37. Шар массой 1 кг, катящийся без скольжения, ударяется о стенку и откатывается от нее. Скорость шара до удара о стенку 10 см/с, после удара 8 см/с. Найдите количество теплоты, выделившееся при ударе, и импульс, который получает стенка. [2,52 мДж; 0,18 кг·м/с].

3.38. Медный шар радиусом 10 см вращается с частотой 2 об/с вокруг оси, проходящей через его центр. Какую работу надо совершить, чтобы увеличить угловую скорость вращения вдвое? [34,1 Дж].

3.39. Деревянный стержень массой 1 кг и длиной 40 см может вращаться вокруг оси, проходящей через его середину перпендикулярно к стержню. В конец стержня попадает пуля массой 10 г, летящая перпендикулярно к оси и стержню со скоростью 200 м/с. Определите угловую скорость, которую получит стержень, если пуля застрянет в нем. [29 рад/с].

3.40. Два маленьких шарика массами 40 и 120 г соответственно соединены стержнем длиной 20 см, масса которого ничтожно мала. Система вращается около оси, перпендикулярной к стержню и проходящей сквозь центр инерции системы. Определите импульс и момент импульса системы. Частота оборотов равна 3 с-1. [0; 2,3·10-2 кг·м2/с].

3.41. Маховик начинает вращаться из состояния покоя с постоянным угловым ускорением 0,4 рад/с2. Определите кинетическую энергию маховика через 25 с после начала движения, если через 10 с после начала движения момент импульса маховика составлял 60 кг·м2/с. [750 Дж].

3.42. Какую работу нужно произвести, чтобы увеличить частоту оборотов маховика от 0 до 120 мин-1? Массу маховика, равную 0,5 т, можно считать распределенной по ободу диаметром 1,5 м. Трением пренебречь. [22,2 кДж].

3.43. На скамье Жуковского (платформа вращающаяся без трения) стоит человек и держит в руках стержень по оси скамьи. Скамья с человеком вращается с угловой скоростью 4 рад/с. С какой скоростью будет вращаться скамья с человеком, если стержень повернуть так, чтобы он занял горизонтальное положение? Суммарный момент инерции человека и скамьи 5 кг·м2, длина стержня 2 м, масса 6 кг. Считать, что центр масс стержня с человеком в обоих случаях находится на оси платформы. [2,9 рад/с].

3.44. На неподвижной скамье Жуковского стоит человек и держит в руке за ось велосипедное колесо, вращающееся вокруг своей оси с угловой скоростью 25 рад/с. Ось колеса расположена вертикально и совпадает с осью скамьи. С какой скоростью станет вращаться скамья, если повер­нуть колесо вокруг горизонтальной оси на угол 90°? Момент инерции человека и скамьи равен 2,5 кг·м2, момент инерции колеса 0,5 кг·м2. [5 рад/с].

3.45. Платформа в виде диска вращается по инерции без трения около вертикальной оси с частотой 14 мин-1. На краю платформы стоит человек. Когда человек перешел в центр платформы, частота возросла до 25 мин-1. Масса человека 70 кг. Определите массу платформы. Момент инерции человека рассчитывать, как для материальной точки. [178 кг].

3.46. Горизонтальная платформа массой 150 кг вращается вокруг вертикальной оси, проходящей через центр платформы с частотой 8 мин-1. Человек массой 70 кг стоит при этом на краю платформы. С какой угловой скоростью начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу круглым однородным диском, а человека - материальной точкой. [1,62 рад/с].

3.47. Горизонтальная платформа массой 25 кг и радиусом 0,8 м вращается с частотой 18 мин-1. В центре стоит человек и держит в расставленных руках гири. Считая платформу диском, определите частоту вращения платформы, если человек, опустив руки, уменьшит свой момент инерции от 3,5 кг·м2 до 1 кг·м2. [23 мин-1].

3.48. Человек, стоящий на скамье Жуковского, держит в руках стержень длиной 2,5 м, расположенный вертикально вдоль оси вращения скамейки. Эта система (скамья и человек) обладает моментом инерции 10 кг·м2 и вращается с частотой 12 мин-1. Если стержень повернуть в горизонтальное положение, держась за его середину, то частота вращения системы станет 8,5 мин-1. Определите массу стержня. [8 кг].

3.49. Человек массой 60 кг, стоящий на краю горизонтальной платформы радиусом 1 м и массой 120 кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой 10 мин-1, переходит к ее центру. Считая платформу круглым однородным диском, а человека – точечной массой, определите работу, совершаемую человеком при переходе от края платформы к ее центру. [65,8 Дж].

3.50. На краю неподвижной скамьи Жуковского диаметром 0,8 м и массой 6 кг стоит человек массой 60 кг. С какой угловой скоростью начнет вращаться скамья, если человек поймает летящий на него мяч массой 0,5 кг? Траектория мяча горизонтальна и прохо­дит на расстоянии 0,4 м от оси скамьи. Скорость мяча 5 м/с. [0,1 рад/с].

3.51. Платформа в виде диска диаметром 3 м и массой 180 кг может вращаться вокруг вертикальной оси. С какой угловой скоростью будет вращаться эта платформа, если по ее краю пойдет человек массой 70 кг со скоростью 1,8 м/с относительно платформы? [0,53 рад/с].

3.52. В центре вращающегося столика стоит человек, держащий на вытянутых руках на расстоянии 150 см друг от друга две гири. Столик вращается с частотой 1 с-1. Человек сближает гири до расстояния 80 см, и частота увеличивается до 1,5 с-1. Определите работу, произведенную человеком, если каждая гиря имеет массу 2 кг. Момент инерции человека относительно оси столика считать постоянным. [48 Дж].

 

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ

Основные законы и формулы

· Уравнение гармонических колебаний:

,

где – смещение точки от положения равновесия; А – амплитуда колебаний; – круговая (циклическая частота); t – время; – начальная фаза колебаний.

,

где – частота колебаний, – период колебаний.

· Скорость и ускорение при гармонических колебаниях:

,

.

· Возвращающая сила:

,

,

где – коэффициент упругой (квазиупругой) силы; – масса материальной точки.

· Максимальная возвращающая сила

.

· Кинетическая энергия колеблющейся точки

.

· Потенциальная энергия колеблющейся точки

.

· Полная энергия при гармонических колебаниях:

.

· Периоды колебаний:

– математический маятник ( – длина нити; – ускорение свободного падения),

– пружинный маятник ( – масса тела; – жесткость пружины),

– физический маятник ( – момент инерции тела относительно оси, проходящей через точку подвеса; – масса тела; – расстояние от точки подвеса до центра масс).

· Уравнение затухающих колебаний:

,

где – амплитуда колебаний в начальный момент времени; – амплитуда затухающих колебаний; – коэффициент затухания ( – коэффициент сопротивления; – масса точки); – частота затухающих колебаний.

· Логарифмический декремент затухания

.

· Амплитуда результирующего колебания, полученного при сложении двух колебаний одинаковой частоты и одного направления:

,

где и – амплитуды слагаемых колебаний; – разность фаз слагаемых колебаний.

· Начальная фаза результирующего колебания определяется из формулы:

.

· Уравнение траектории точки, участвующей в двух взаимно­ перпенди­кулярных колебаниях с одинаковыми частотами:

,

где – разность фаз складываемых колебаний.

Задания

4.1. Уравнение движения точки дано в виде м. Найдите период, амплитуду, начальную фазу, циклическую частоту и частоту колебаний. [1с; 0,1м; ; 2 ; 1 Гц].

4.2. Напишите уравнение гармонических колебаний точки с амплитудой 0,1 м, если начальная фаза равна , а период колебаний 2 с.

4.3. Напишите уравнение гармонических колебаний точки с амплитудой 5 см, если за 2 минуты совершается 120 колебаний, а начальная фаза равна 60º.

4.4. Уравнение движения точки дано в виде м. Найдите максимальные значения скорости и ускорения. [ ].

4.5. Точка совершает гармонические колебания с амплитудой 10 см и периодом 5 с. Определите максимальную скорость и максимальное ускорение. [12,6 см/с; 15,8 см/с2].

4.6. Определите максимальные значения скорости и ускорения точки, совершающей гармонические колебания с амплитудой 2 см и периодом 2 с. [0,0628 м/c; 0,197 м/с2].

4.7. Точка совершает гармонические колебания с периодом 8 с и начальной фазой, равной нулю. Определите, за какое время точка сместится от положения равновесия на половину амплитуды. [4/3 c].

4.8. Точка совершает гармонические колебания с периодом 12 с. Определите, за какое время скорость точки увеличится от нуля до половины максимального значения. [1 c].

4.9. Точка совершает гармонические колебания с периодом 12 c. Определите, за какое время ускорение точки увеличится от нуля до половины максимального значения. [1 c].

4.10. Уравнение движения точки дано в виде . Определите моменты времени, при которых достигается максимальная скорость точки. [2 с; 6 с; 10 с, …].

4.11. Уравнение движения точки дано в виде . Определите моменты времени, при которых достигается максимальное ускорение точки. [0 c; 2 c; 4 c, …].

4.12. Материальная точка совершает гармонические колебания согласно уравнению м. Определите максимальное значение модуля возвращающей силы и полную энергию точки, если её масса 0,1 кг. [0,59 Н; 0,047 Дж].

4.13. Материальная точка массой 50 г совершает гармонические колебания согласно уравнению м. Определите возвращающую силу для момента времени 2 с. [0,11 Н].

4.14. Определите отношение кинетической энергии точки, совершающей гармонические колебания, к её потенциальной энергии для моментов времени: a) t=T /12; б) t=T /8; в) t=T /6, где Т – период колебаний. Начальная фаза равна нулю. [3; 1; 1/3].

4.15. Определите отношение кинетической энергии точки, совершающей гармонические колебания, к её потенциальной энергии для моментов времени, при которых смещение от положения равновесия составляет: а) х=А /4; б) х=А /2; в) х=А, где А – амплитуда колебаний. [15; 3; 0].

4.16. Как изменится частота колебаний груза, висящего на двух одинаковых пружинах, если от их последовательного соединения перейти к параллельному? [увеличится в 2 раза].

4.17. Груз, подвешенный к пружине, колеблется по вертикали с амплитудой 8 см. Определите жёсткость пружины, если известно, что максимальная кинетическая энергия груза равна 0,8 Дж. [250 Н/м].

4.18. Если увеличить массу груза, подвешенного на пружине, на 600 г, то период колебаний возрастёт в 2 раза. Определите массу первоначально подвешенного груза. [200 г].

4.19. Два математических маятника, длины которых отличаются на 16 см, совершают за одно и то же время один 10 колебаний, другой 6 колебаний. Определите длины маятников. [9 см; 25 см].

4.20. Математический маятник длиной 1 м подвешен к потолку кабины, которая начинает опускаться вертикально вниз с ускорением . Найдите период колебаний этого маятника. [2,32 с].

4.21. На какую высоту надо поднять математический маятник, чтобы период его колебаний увеличился в 2 раза? Радиус Земли 6400 км. [ ].

4.22. Маятник, состоящий из невесомой нити длиной 1 м и свинцового шарика радиусом 0,02 м, совершает гармонические колебания с амплитудой 0,06 м. Определите: а) модуль максимального значения возвращающей силы; б) модуль максимальной скорости. Плотность свинца 11,3.103 кг/м3. [0,22 Н; 0,18 м/с].

4.23. Тонкий обруч радиусом 0,5 м подвешен на вбитый в стенку гвоздь и совершает гармонические колебания в плоскости, параллельной стене. Определите частоту колебаний обруча. [0,5 Гц].

4.24. Однородный диск радиусом 20 см колеблется около горизонтальной оси, проходящей на расстоянии 15 см от центра диска. Определите период колебаний диска относительно этой оси. [1,07 с].

4.25. Диск радиусом подвешен так, что может совершать гармонические колебания относительно образующей диска. Определите период и частоту колебаний диска. [ ].

4.26. Тонкий стержень длиной 60 см совершает колебания относительно оси, отстоящей на расстоянии 15 см от его середины. Определите период колебаний стержня. [1,19 с].

4.27. Определите амплитуду и начальную фазу гармонического колебания, полученного от сложения одинаково направленных колебаний, заданных уравнениями: и [ ; ].

4.28. Найдите уравнение результирующего колебания, полученного от сложения одинаково направленных колебаний, заданных уравнениями: , . [ ].

4.29. Точка участвует в двух колебаниях одинаковой частоты одного направления и с одинаковыми начальными фазами. Амплитуды колебаний соответственно равны 3 и 4 см. Определите амплитуду результирующего колебания. [7 см].

4.30. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, которые происходят по законам: и . Найдите траекторию движения точки. [окружность радиусом 2 ].

4.31. Точка участвует в двух колебаниях одинаковой частоты и с одинаковыми начальными фазами, совершаемых во взаимно перпендикулярных направлениях. Амплитуды колебаний соответственно равны 3 и 4 см. Определите амплитуду результирующего колебания. [5 см].

4.32. Запишите уравнение результирующего колебания точки, полученного от сложения двух взаимно перпендикулярных колебаний одинаковой частоты , с одинаковыми начальными фазами, равными , и с амплитудами: и . [ ].

4.33. Уравнение затухающих колебаний точки дано в виде м. Определите скорость точки в моменты времени, равные . [7,85 м/с; 2,9 м/с; 1,1 м/с].

4.34. Логарифмический декремент затухания математического маятника равен 0,2. Во сколько раз уменьшится амплитуда за одно полное колебание? [в 1,22 раз].

4.35. Начальная амплитуда затухающих колебаний точки равна 3 см. По истечении 10 с от начала колебаний амплитуда стала равной 1 см. Через какое время амплитуда станет равной 0,3 см? [21 c].

4.36. Амплитуда затухающих колебаний маятника за 2 минуты уменьшилась в 2 раза. Определите коэффициент затухания. [5,78.10-3 1/с].

4.37. Амплитуда затухающих колебаний маятника за 1 минуту уменьшилась в 3 раза. Во сколько раз она уменьшится за 4 минуты? [в 81 раз].





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 1380 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2338 - | 2092 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.