Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Динамика материальной точки




Общие методические указания

 

При решении и оформлении задач необходимо соблюдать следующие требования:

1. Записать краткое условие задачи, выразить все известные величины в одной и той же системе единиц (как правило, в СИ). При необходимости ввести дополнительные постоянные физические величины.

2. Решение задач следует сопровождать краткими, но исчерпывающими объяснениями. При необходимости дать чертеж или график.

3. Решать задачу надо первоначально в общем виде, выразив искомую величину в буквенных обозначениях, заданных в условии задачи, затем произвести вычисления.

В конце каждой задачи дан ответ, кроме тех случаев, когда решение задачи предполагает только буквенное решение.

В течение семестра студенты выполняют две контрольные работы: первую – по механике, вторую – по молекулярной физике и термодинамике.

Результаты контроля аудиторной и самостоятельной работы студентов на практических занятиях учитываются лектором при приеме экзаменов и дифференцированных зачетов.

 

ЭЛЕМЕНТЫ КИНЕМАТИКИ

Основные законы и формулы

· Средняя и мгновенная скорости материальной точки

, ,

где – перемещение точки за время , – радиус-вектор, определяющий положение точки.

· Для прямолинейного равномерного движения ()

,

где – путь, пройденный точкой за время .

· Среднее и мгновенное ускорения материальной точки:

, .

· Полное ускорение при криволинейном движении:

, ,

где – тангенциальная составляющая ускорения, направленная по касательной к траектории; – нормальная составляющая ускорения, направленная к центру кривизны траектории ( – радиус кривизны траектории в данной точке).

· Путь и скорость для равнопеременного движения материальной точки ():

; ,

где – начальная скорость, «+» соответствует равноускоренному движению, «-» – равнозамедленному.

· Угловая скорость

.

· Угловое ускорение

.

· Угловая скорость для равномерного вращательного движения твердого тела

,

где – угол поворота тела; – период вращения; – частота вращения ( – число оборотов, совершаемых телом за время ).

· Угол поворота и угловая скорость для равнопеременного вращательного движения твердого тела ():

; ,

где – начальная угловая скорость, «+» соответствует равноускоренному вращению, «-» – равнозамедленному.

· Связь между линейными и угловыми величинами:

; ;

;

где – расстояние от точки до мгновенной оси вращения.

 

 

Задания

1.1. Пароход идет по реке от пункта А до пункта В со скоростью 10 км/ч, а обратно – со скоростью 16 км/ч. Найдите: 1) среднюю скорость парохода, 2) скорость течения реки. [12,3 км/ч; 0,83 м/с].

1.2. Скорость течения реки 3 км/ч, а скорость движения лодки относительно воды 6 км/ч. Опреде­лите, под каким углом относительно берега должна дви­гаться лодка, чтобы проплыть поперек реки. [60°].

1.3. Велосипедист проехал первую половину времени своего движения со скоростью 16 км/ч, вторую половину времени — со скоростью 12 км/ч. Определите среднюю скорость движения велосипедиста. [14 км/ч].

1.4. Велосипедист проехал первую половину пути со скоростью 16 км/ч, вторую половину пути – со ско­ростью 12 км/ч. Определите среднюю скорость дви­жения велосипедиста. [13,7 км/ч].

1.5. Студент проехал половину пути на велосипеде со скоростью 16 км/ч. Далее в течение половины остав­шегося времени он ехал со скоростью 12 км/ч, а затем до конца пути шел пешком со скоростью 5 км/ч. Определите среднюю скорость движения студента на всем пути. [11,1 км/ч].

1.6. После удара клюшкой шайба скользит по льду с постоянным ускорением. В конце пятой секунды после начала движения ее скорость была равна 1,5 м/с, а в конце шестой секунды шайба остановилась. С каким ускорением двигалась шайба, какой путь прошла и какова была ее скорость на расстоянии 20 м от начала движения? [1,5 м/c2; 27 м; 4,6 м/с].

1.7. Тело, брошенное вертикально вверх, через 3 с после начала движения имело скорость 7 м/с. На какую максимальную высоту относительно места броска поднялось тело? Считать . Сопротивлением воздуха пренебречь. [67,6 м].

1.8. Тело падает вертикально с высоты 19,6 м с нулевой начальной скоростью. Какой путь пройдет тело: 1) за первую 0,1 с своего движения, 2) за последнюю 0,1 с своего движения? Считать . Сопротивлением воздуха пренебречь. [0,049 м; 1,9 м].

1.9. Тело падает вертикально с высоты 19,6 м с нулевой начальной скоростью. За какое время тело пройдет: 1) первый метр своего пути, 2) последний метр своего пути? Считать . Сопротивлением воздуха пренебречь. [0,4 с; 0,05 с].

1.10. С башни в горизонтальном направлении брошено тело с начальной скоростью 10 м/с. Пре­небрегая сопротивлением воздуха, определите для мо­мента времени = 2 с после начала движения: 1) ско­рость тела; 2) радиус кривизны траектории. Считать . [22 м/с; 109 м].

1.11. Камень брошен горизонтально со скоростью 5м/с. Определите нормальное и тангенциальное ускорения камня через 1 с после начала движения. Считать . Сопротивлением воздуха пренебречь. [4,45 м/с2; 8,73 м/с2].

1.12. Камень брошен горизонтально со скоростью 10 м/с. Найдите радиус кривизны траектории камня через 3 с после начала движения. Считать . Сопротивление воздуха не учитывать. [305 м].

1.13. Материальная точка начинает двигаться по ок­ружности радиусом = 2,5 см с постоянным тангенциальным ускорением =0,5 см/с2. Определите: 1) момент времени, при котором вектор ускорения образует с вектором скорости угол 45°; 2) путь, пройденный за это время движущейся точкой. [1) с; 2) 1,25 см]

1.14. Линейная скорость точки, находящейся на ободе вращающегося диска, в три раза больше, чем линейная скорость точки, находящейся на 6 см ближе к его оси. Определите радиус диска. [9 см].

1.15. Колесо вращается с постоянным угловым ускорением 3 рад/с2. Определите радиус колеса, если через 1 с после начала движения полное ускорение колеса 7,5 м/с2. [79 см].

1.16. Два автомобиля, выехав одновременно из одного пункта, движутся прямолинейно в одном направлении. Зависимость пройденного ими пути задается уравнения­ми и . Определите закон изменения относительной скорости автомобилей.

1.17. Кинематические уравнения движения двух материальных точек имеют вид и , где , , . Определите: 1) момент времени, для которого скорости этих точек будут равны; 2) ускорения и для этого момента. [1) 0; 2) – 4 м/с2; 2 м/с2].

1.18. Диск вращается так, что зависимость линейной скорости точек, лежащих на ободе диска, от времени задается уравнением ( = 0,3 м/с2, = 0,1 м/с3). Определите радиус, если к концу 2-й секунды движения вектор полного ускорения образует с вектором скорости угол = 86°. [0,1 м].

1.19. Нормальное ускорение точки, движущейся по окружности радиусом , задается уравнением , где =4 м/с4. Определите: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время =5 с после начала движения; 3) полное ускорение для момента времени = 1 с. [1)4 м/с2; 2)50 м; 3) м/с2].

1.20. Зависимость пройденного телом пути от времени выражается уравнением ( = 2 м/с, = 3 м/с2, = 4 м/с3). Запишите выражения для скорости и ускорения. Определите для момента времени после начала движения пройденный путь, скорость и ускорение. [24 м; 38 м/с; 42 м/с2].

1.21. Зависимость пройденного телом пути от времени задаётся уравнением , где =5м, =4м/с, =1м/с2. Запишите выражения для скорости и ускорения. Определите для момента времени после начала движения пройденный путь, скорость и ускорение. [2м; 2м/с; 2 м/с2].

1.22. Зависимость пройденного телом пути от времени задаётся уравнением , где =0,1м, =0,1м/с, =0,14м/с2, =0,01м/с3. 1. Через сколько времени после начала движения ускорение тела будет равно 1м/с2? 2. Чему равно среднее ускорение тела за этот промежуток времени? [1) через 12с; 2) 0,64 м/с2].

1.23. Зависимость пройденного телом пути от времени задаётся уравнением , где =6м, =3м/с, =2м/с2. Найдите среднюю скорость и среднее ускорение в интервале времени от 1с до 4с. [ =7м/с; =4м/с2].

1.24. Зависимость пройденного телом пути по окружности радиусом задается уравнением ( = 0,4 м/с2, = 0,1 м/с). Для момента времени после начала движения определите нормальное, тангенциальное и полное ускорения. [0,27 м/с2; 0,8 м/с2; 0,84 м/с2].

1.25. Радиус-вектор материальной точки изменяется со временем по закону , где - орты осей и . Определите для момента времени = 1 с модуль скорости и модуль ускорения. [6,7 м/с; 8,48 м/с2].

1.26. Радиус-вектор материальной точки изменяется со временем по закону . Запишите зависимости скорости и ускорения от времени. Определите модуль скорости в момент времени = 2 с. [16,3 м/с].

1.27. Диск радиусом 10 см вращается вокруг не­подвижной оси так, что зависимость угла поворота ради­уса диска от времени задается уравнением ( =1 рад/с, =1 рад/с2, = 1 рад/с3). Определите для точек на ободе диска к концу второй се­кунды после начала движения тангенциальное, нормальное и полное ускоре­ния. [1,4 м/с2; 28,9 м/с2; 28,9 м/с2].

1.28. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением ( =0,5 рад/с2). Определите к концу второй секунды после начала движения: 1) угловую скорость диска; 2) угловое ускорение диска; 3) для точки, находящейся на расстоянии 80 см от оси вращения, тангенциальное, нормальное и полное ускорения. [1) 2 рад/с; 2) 1 рад/с2; 3) 0,8 м/с2; 3,2 м/с2; 3,3 м/с2].

1.29. Диск вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением ( =0,1рад/с2). Определите полное ускорение точки на ободе диска к концу второй секунды после начала движения, если в этот момент линейная скорость этой точки 0,4 м/с. [0,25 м/с2].

1.30. Диск радиусом 0,2 м вращается вокруг неподвижной оси так, что зависимость угловой скорос­ти от времени задается уравнением , где . Определите для точек на ободе диска к концу первой секунды после начала движения полное ускорение и число оборотов, сделанных диском за первую минуту движения. [5,8 м/c2; 15, 9].

1.31. Диск радиусом 10 см вращается так, что зависимость угла поворота радиуса диска от времени задается уравнением ( = 2 рад, = 4 рад/с3). Определите для точек на ободе колеса: 1) нормальное ус­корение в момент времени 2 с; 2) тангенциальное ускорение для этого же момента; 3) угол поворота, при котором полное ускорение составляет с радиусом колеса 45°. [1) 230 м/с2; 2) 4,8 м/с2; 3) 2,67 рад].

1.32. Якорь электродвигателя, имеющий частоту вращения 50 с-1, после выключения тока, сделав 628 оборотов, остановился. Определите угловое ускорение якоря. [12,5 рад/с2].

1.33. Колесо автомобиля вращается равнозамедленно. За время 2 мин оно изменило частоту вращения от 240 до 60 мин-1. Определите: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время. [1) 0,157 рад/с2; 2) 300].

1.34. Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найдите угловое ускорение колеса. [3,2 рад/с2].

1.35. Колесо спустя 1 мин после начала вращения приобретает скорость, соответствующую частоте 720 об/мин. Найдите угловое ускорение колеса и число оборотов, сделанных колесом за эту минуту. Движение считать равноускоренным. [1,26 рад/с2; 360].

1.36. Колесо, вращаясь равнозамедленно, при торможении уменьшило частоту вращения за 1 мин с 300 до 180 об/мин. Найдите угловое ускорение колеса и число оборотов, сделанных за это время. [ 0,21 рад/с2; 240].

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 504 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2338 - | 2143 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.