Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пряма називається нахиленою асимптотою графіка функції при , де




. (18)

Якщо коефіцієнт , тоді така асимптота називається горизонтальною .

Пряма називається вертикальною асимптотою графіка функції , якщо (або ).

Приклад 2. Знайти асимптоти графіка функції .

За формулою (18) знаходимо коефіцієнти і нахиленої асимптоти:

Отже, пряма є нахиленою асимптотою графіка даної функції як при , так і при . Оскільки , то горизонтальних асимптот немає.

Нарешті, точка є точкою розриву даної функції , причому . Отже, пряма (вісь ординат) є вертикальною асимптотою функції , графік якої показано на Рис. 3.4.

 

20

у

10

 

0

0 х

-10

 

 

-20

-2 -1 0 1 2

 

Рис. 3.4. Графік функції

Наведемо загальну схему для побудови графіка функції :

1. Знайти область визначення функції.

2. Знайти точки перетину графіка функції з віссю ординат (покласти у формулі, яка задає функцію, х = 0) і віссю абсцис (розв’язати рівняння )

3. Знайти асимптоти функції.

4. Дослідити функцію на екстремум: знайти точки мінімуму, максимуму, а також точки перегину. Обчислити значення функції у цих точках. Встановити ділянки монотонності функції.

5. Побудувати схематичний графік функції .

При побудові графіка важливо врахувати його симетрію. Для цього корисно перевірити функцію на парність (непарність).

Зауваження. Функція називається парною (непарною), якщо виконується умова: .

Також важливо перевірити функцію на періодичність: , де – період функції .

Приклад 3. Побудувати графік функції .

Згідно з наведеною вище схемою:

1. Область визначення функції (точка х = 1 є точкою розриву).

2. Графік даної функції перетинає вісь ординат у точці (при ). Оскільки рівняння не має дійсних коренів, то графік даної функції взагалі не перетинає вісь абсцис.

3. Дослідимо поведінку функції поблизу точки розриву х = 1. Маємо: . Отже, пряма х = 1 є вертикальною асимптотою. За формулами (18) знаходимо:

 

+ max – – min +

                   
 
 
   
   
   
     
 
 
 


1 x

Рис. 3.5. Дослідження функції на екстремум

Отже, пряма є нахилена асимптота даної функції. Горизонтальних асимптот немає.

4. Знайдемо першу похідну функції і прирівняємо її до нуля:

Відмітивши ці точки на осі х (Рис. 3.5), дослідимо їх на екстремум. Отже, є точкою максимуму, , а є точкою мінімуму, . Функція зростає на інтервалах і . Функція спадає на інтервалі . З’ясуємо, чи має дана функція точку перегину. Знайдемо її другу похідну:

. Отже, точок перегину функція немає.

5. Дана функція не є парною і не є непарною. Її графік наведено на Рис. 3.6.

40 y

30

20

10 1- 0

0 1 x

-10 1+

-20

-30

-40

-2 -1 0 1 2 3

 

Рис. 3.6. Графік функції

Функція двох змінних. Частинні похідні.

Градієнт функції.

Нехай задано закон , за яким кожній впорядкованій парі незалежних змінних ставиться у відповідність хоча б єдине число z. Число z називають значенням функції f у точці .

Приклад 1. Розглянемо функцію двох змінних . Область визначення цієї функції - це множина усіх точок, які задовольняють нерівність (рівняння кола радіусом 1 з центром у початку координат). Множиною значень даної функції є відрізок .

Нехай функція визначена у деякому околі точки . Тоді частинна похідна цієї функції за змінною x (або y) визначається як звичайна похідна функції однієї змінної x (або y) за фіксованого значення змінної y (або x) і позначається так (частинна похідна першого порядку): .

Приклад 2. Знайти частинні похідні першого порядку від функції .

.

Приклад 3. Знайти частинні похідні другого порядку від функції .

Для цього знайдемо спочатку частинні похідні першого порядку:

.

Далі отримуємо:

.

Зауваження. Похідні і називаються мішаними частиннимипохідними.

Для характеристики швидкості зміни функції в точці у напрямку деякого одиничного вектора зручно ввести поняття похідної за напрямком:

. (19)

Приклад 4. Обчислити похідну функції у точці за напрямком вектора , де А - точка з координатами .

Спочатку знайдемо координати одиничного вектора , який задає напрямок :

. Далі обчислимо частинні похідні функції z у точці :

.

За формулою (19) маємо: .

Градієнтом функції називається вектор, який у декартовій системі координат визначається за формулою:

. (20)

Зауваження. У просторі градієнт функції визначається за такою формулою:

.

З урахуванням виразу (20) формулу (19) можна переписати так

,

де - кут між векторами і . Звідси випливає, що похідна функції за напрямком має найбільшу величину при , тобто коли напрямок вектора збігається з напрямком вектора .

Отже, градієнт функції у точці характеризує напрямок і величину максимальної швидкості зростання цієї функції в даній точці.





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 512 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2355 - | 2035 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.