Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Решение. Задача 2.Задана плотность распределения:




 

Задача 2. Задана плотность распределения:

Найти h.

Решение.

h-2=1 Þ h=3

Нормальное распределение. Случайная величина х называется нормально распределённой, если её плотность распределения f(x) имеет вид:

,

где а и σ – параметры нормального распределения, σ >0.

В этом случае говорят, что х распределено нормально согласно закону N(a, σ).

Если а=0 и σ=1, то и эта функция обозначается через φ(х) и называется плотностью нормированного и центрированного нормального распределения. Функция распределения в этом случае обозначается через .

Значения Ф(х) затабулированы, .

 

Задача 1. Рост мужчины в Москве имеет нормальное распределение. Средний рост мужчины в Москве а=175 см, σ=10 см. Какова вероятность, что рост первого встречного мужчины будет в пределах 160-190 см?

Решение.

Правило трёх сигм. Случайная величина х распределена нормально N(a, σ).

Задача 1. Рост мужчины в Москве имеет нормальное распределение. Средний рост мужчины в Москве а=175 см, σ=10 см. Какова вероятность, что рост первого встречного мужчины будет в пределах 145-205 см?

Решение.

Правило двух сигм. Случайная величина х распределена нормально N(a, σ).

Правило одной сигмы. Случайная величина х распределена нормально N(a, σ).

 





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 1972 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2510 - | 2261 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.