Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Доказательство




Покажем, что ряд сходится.

x достаточно близко к x 0.

модуль

 

Теорема о непрерывности суммы функционального ряда

Теорема. Если все члены ряда (1) - непрерывные на [a;b] ф-ции, а ряд (1) сх-ся равномерно на [a;b], то его сумма S(x) также непрерывна на отрезке [a;b].

Док-во: Пусть - произв.точка [a;b]. Для опр-ности будем считать, что (a;b). Нужно док-ть, что S(x)= непрерывна в , т.е < (2), [a;b]. По усл-ю, ряд (1) равномерно сх-ся на [a;b], т.е n [a;b] < (3), где = . Фиксируем номер , тогда при n= из (3) получаем: < (4). В частности, при x= находим < (5). Ф-ция (x) непрерывна в как сумма конечного числа непрерывных ф-ций. По опр-ю непрерывности [a;b] < (6). Восп. рав-вом S(x)-S()=(S(x)- (x))+( (x)- ())+( ()-S()). Отсюда получаем, исп. (4)-(6) и нер-во треугольника: < , для [a;b], т.е справедливо утв-е (2). В силу произвольности точки ф-ция S(x) непрерывна на отрезке [a;b].

Теорема о почленом интегрировании функционального ряда

 





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 1247 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2189 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.