Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Статистическое определение количества информации (по Шеннону)




Этот подход к определению количества информации в сообщениях, учитывающий не равновероятное появление символов сообщения и их статистическую связь, был предложен К.Шенноном в 1946 г.

Рассмотрение этого метода удобно начать с определения количества информации в дискретных сообщениях, символы которых появляются не равновероятно, однако статистическая связь между символами отсутствует.

Пусть, как и ранее, дан источник дискретных сообщений , с объемом алфавита равным m, который генерирует сообщение, состоящее из n символов. Допустим, что в этом сообщении символ встречается раз, символ раз и так далее вплоть до символа , который встречается раз, причем очевидно, что

При приеме одного символа , как следует из (1.4), получаем количество информации :

,

где - априорная вероятность появления символа .

А количество информации , содержащееся в взаимно независимых символах , будет равно:

.

Аналогично, в символах содержится количество информации :

,

и так далее вплоть до

.

Очевидно, что полное количество информации (In), содержащееся в сообщении из n символов, равно сумме количеств информации содержащихся во всех m символах алфавита.

(бит).

Разделив и умножив это выражение на n (n ≠ 0),приведем это выражение к виду:

(бит)

Ясно, что отношение – это априорная вероятность появления i -го символа. Таким образом, при достаточно большом n, имеем: , причем , как сумма вероятностей полной группы событий.

Окончательно получим:

(бит) (1.7)

При этом среднее количество информации, приходящееся на один символ (Н), будет равно:

(1.8)

Определенная таким образом величина Н называется энтропией, а формула (17) известна как формула Шеннона для энтропии источника дискретных сообщений. Энтропия определяет среднее количество информации, приходящееся на один символ дискретного сообщения.

В общем случае, символы, входящие в сообщения, могут появляться не только с различной вероятностью, но и быть статистически зависимыми. Статистическая зависимость может быть выражена условной вероятностью появления одного символа после другого.

Чтобы учесть статистические связи между символами, входящими в сообщение, вводят понятие условной энтропии.

Условная энтропия () определяется выражением

, (1.9)

где – условная вероятность появления символа после символа . Количество информации , содержащееся в такого рода сообщении длиной n символов, равно:

(бит) (1.10)





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 949 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2176 - | 2136 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.