Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Структурное (комбинаторное) определение количества информации (по Хартли)




Данное определение количества информации применимо лишь к дискретным сообщениям, причем таким, у которых символы равновероятны и взаимно независимы. Количество информации, содержащееся в такого рода сообщениях определяют из следующих соображений.

Пусть дан источник дискретных сообщений , объем алфавита которого равен m. Предположим, что каждое сообщение включает в себя n символов, при этом сообщения различаются либо набором символов, либо их размещением. Число различных сообщений , состоящих из n символов, будет . Предположим, что все сообщения равновероятны и одинакова ценность этих сообщений.

Тогда легко подсчитать количество информации, которое несет каждое сообщение.

Вероятность появления каждого такого сообщения может быть легко найдена:

.

И, следовательно, количество информации в одном сообщении , в соответствии с (1.4), равно:

(бит). (1.5)

Эту формулу предложил Р.Хартли в 1928 г., и она носит его имя. Разделив на количество символов в сообщении (n), получим значение среднего количества информации , приходящееся на один символ сообщения:

(бит / символ), (1.6)

где - вероятность появления одного символа сообщения.

Из соотношений (1.5) и (1.6) вытекают важные свойства дискретных сообщений, символы которых равновероятны и взаимно независимы.

1. Количество информации в сообщении пропорционально полному числу символов в нем – n и логарифму объема алфавита- m.

2. Среднее количество информации, приходящееся на один символ, зависит только от m – объема алфавита.

В реальных дискретных сообщениях символы часто появляются с различными вероятностями и, более того, часто существуют статистическая связь между символами, характеризующаяся условной вероятностью , которая равна вероятности появления символа после символа . Например, в тексте на русском языке вероятность появления различных символов (букв) различна. В среднем, в тексте из 1000 букв буква О появляется 110 раз, Е – 87, А – 75, Т – 65, Н – 65, С – 55, кроме того, существуют статистические связи между буквами, скажем, после гласных букв не может появиться Ь или Ъ.

Исходя из этого, применение формулы вычисления количества информации по Хартли (1.5) и (1.6) не всегда корректно.

 





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 846 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2392 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.