По своему строению структура металл–диэлектрик–полупроводник (МДП) представляет собой плоский конденсатор, одна из обкладок которого выполнена из полупроводника. Наличие полупроводника приводит к тому, что в структуре появляются дополнительные слои, как хорошо проводящие электрический ток, так и плохо. Эти слои имеют достаточно большие размеры по сравнению с металлом, поскольку радиус экранирования Дебая в полупроводниках в 100–1000 раз больше, чем в металле. В результате емкость МДП-структуры представляется двумя последовательно соединенными емкостями: емкостью диэлектрика Сd и емкостью полупроводника Сs. На рис. 9 представлены конструкция (а) и энергетическая диаграмма структуры в равновесном состоянии (б). Обратите внимание, в равновесном состоянии (U= 0) в полупроводнике присутствует искривление энергетических зон. Это связано в первую очередь с контактной разностью потенциалов Ме– п/п. Более того, для типичного сочетания Al–Si эта разность потенциалов одного знака как для n- типа, так и для p- типа полупроводника.
Рис. 9. МДП-структура: а) конструкция; б) энергетическая диаграмма
Полная емкость структуры определяется выражением
. (4)
Емкость диэлектрика определяется конструктивными параметрами и не зависит от напряжения смещения, т.е. является линейным элементом:
, (5)
где ε s – диэлектрическая проницаемость материала диэлектрика; S – площадь управляющего электрода; d d – толщина диэлектрика.
Емкость полупроводника Сs является нелинейным элементом, т.к. определяется как конструктивными параметрами, так и напряжением смещения U. При этом выделяют несколько режимов работы: обогащения, плоских зон, обеднения и инверсии. Энергетические диаграммы структуры и схематическое распределение зарядов показано на рис. 10. Первичной характеристикой нелинейной емкости является зависимость заряда QS от потенциала полупроводника j s (рис. 11). Вид этой характеристики показывает существенную нелинейность емкости объемного пространственного заряда.
Рис. 10. Энергетические диаграммы и схематическое распределение зарядов в МДП-структуре:
а) – обогащения; б) – плоских зон; в) – обеднения; г) – инверсии
Рис. 11. Зависимость Qs (j s)
На рис. 12 показаны вольт-фарадные характеристики (С-V -характеристики) для различных режимов МДП-структуры: обогащения (js<0), обеднения (0<j S <j B), слабой (j B <j S <2j B) и сильной (j S >2 j B) инверсий. Начиная с области слабой инверсии в зависимости от частоты измерительного сигнала и темпа изменения напряжения смещения могут иметь место равновесные – низкочастотная (кривая а) и высокочастотная (кривая б) – характеристики и неравновесная высокочастотная характеристика (кривая в). На этом рисунке, кроме упомянутых выше, использованы следующие обозначения: СB – емкость плоских зон, соответствует поверхностному потенциалу j S = 0; С min– минимальная низкочастотная емкости; C’ min – минимальная высокочастотная емкость.
Рис. 12. С-V -характеристики идеальной МДП-структуры
Зависимость емкости идеальной МДП-структуры от напряжения при отрицательных значениях последнего отвечает аккумуляции дырок у границы раздела (см. рис. 12). В этом режиме дифференциальная емкость полупроводника существенно больше емкости диэлектрика, поэтому полная емкость структуры близка к величине Сd. Когда напряжение, приложенное к МДП-структуре, становится больше нуля, в приповерхностном слое полупроводника образуется обедненная область, которая действует как добавочный слой диэлектрика. Это приводит к уменьшению полной емкости МДП-структуры. Затем, проходя через минимум, обозначенный на рас. 12 символом С min, полная дифференциальная емкость структуры резко возрастает, снова приближаясь к величине Сd.
Последнее обусловлено тем, что в данной области напряжений у границы раздела с диэлектриком образуется электронный инверсный слой, дифференциальная емкость (аналогично диффузионной емкости p-n– перехода) которого также значительно превышает емкость диэлектрика. Нарастание емкости в области положительных смещений зависит от того, успевает ли концентрация инверсных электронов следовать за изменениями приложенного к структуре переменного напряжения, с помощью которого осуществляется измерение емкости.
Данный режим осуществляется лишь при сравнительно малых частотах. При более высоких частотах увеличения дифференциальной емкости структуры при положительных напряжениях не наблюдается (кривая б на рис. 12). Кривая в на этом рисунке соответствует вольт-фарадной характеристике идеальной МДП-структуры в условиях глубокого обеднения (импульсное напряжение смещения). На кривых, приведенных на рис. 12, указаны также характерные значения поверхностного потенциала.
Для обедненного слоя МДП-структуры решение уравнения Пуассона дает такой же результат как и в случае барьера Шоттки, поэтому можно воспользоваться уравнением (2) для определения концентрации примеси в полупроводнике.
Из всех МДП-структур наиболее важными являются структуры металл –SiO2, –Si (МОП). Отличие характеристик реальных МОП-структур от соответствующих зависимостей идеальных МДП-конденсаторов обусловлено существованием сложного распределения зарядов в окисле и возникновение поверхностного заряда в кремнии, обусловленного поверхностными ловушками (рис.13).
Рис. 13. Заряды в окисле
Основная причина возникновении поверхностных состояний в запрещенной зоне п/п заключается в том, что сама граница раздела является нарушением пространственной периодичности кристаллической решетки. При изменениях приложенного к МДП-структуре напряжения положение энергетических уровней поверхностных ловушек изменяется, следуя за смещением краев разрешенных зон полупроводника на границе раздела. В результате происходит изменение зарядного состояния этих ловушек.
Исходя из вышеизложенного следует, что эквивалентная схема МДП-структуры оказывается довольно сложной (рис. 14). На этом рисунке Сd – емкость диэлектрика; Rs – сопротивление полупроводника; Соб, Rоб – емкость и сопротивление обедненного слоя полупроводника соответственно; Синв, Rинв – емкость и сопротивление инверсного слоя полупроводника; Спс, Rпс – емкость и сопротивление, обусловленные поверхностными ловушками в полупроводнике. Однако такая полная схема будет реализована только при низкочастотных измерениях в режиме сильной инверсии.
Рис. 14. Полная эквивалентная схема МДП-структуры
При других режимах работы МДП-структуры схема будет изменятся (рис. 15).
Рис. 15. Эквивалентные схемы МДП-структуры при разных режимах:
а) – обогащения; б) – обеднения и инверсии при ВЧ измерениях
(без учета поверхностных состояний)
В частности, в режиме обогащения никаких емкостей в полупроводнике не существует, и эквивалентная схема будет состоять из двух элементов: Сd – емкость диэлектрика и Rs – сопротивление полупроводника. В режиме обеднения (без учета поверхностных состояний) эта схема дополняется Соб и Rоб – емкостью и сопротивлением обедненного слоя полупроводника. Аналогичная схема получается и в инверсном режиме при высокочастотных измерениях, поскольку заряд подвижных носителей не успевает изменяться при изменении напряжения измерительного сигнала (как в данной лабораторной работе).