Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Введение 6 страница. Дальнегорское месторождение боратов разрабатывается открытым способом более 40 лет ПО «Бор»




Дальнегорское месторождение боратов разрабатывается открытым способом более 40 лет ПО «Бор». Руда обогащается, и после разложения серной и угольной кислотами получают около десяти различных видов боропродуктов.

Таблица 6

Главнейшие минералы бора промышленных месторождений

Группа Минерал Химический состав Содержание В2О3, %
       
  Борная кислота (сассолин) B(OH)2 56,4
Натровые Бура (тинкал) Na2B4O7 . 10H2O 36,5
бораты Тинкаконит Na2B4O7 . 5H2O 47,8
  Кернит Na2B4O7 . 4H2O 51,0
Натрово-кальциевые Улексит NaCaB5O9 . 8H2O 43,0
бораты Проберит NaCaB5O9 . 5H2O 49,6
Кальциевые Иньоит Ca2B6O11 . 13H2O 37,6
бораты Колеманит Ca2B6O11 . 5H2O 50,8
  Пандермит Ca4B10O19 . 7H2O 49,8
Кальциево- Курчавит Ca6MgMnB12O30 40,7
(калиево)-магниевые Сахаит Ca12Mg4(CO3)4(BO3)7Cl(OH)2 . H2O 18,5
бораты Калиборит KMg[B3O3(OH)5]2B5O6(OH)4 . 2H2O 57,0
  Гидроборацит CaMgB6O11 . 6H2O 50,6
Окончание табл.
       
Магниевые бораты Борацит Mg3B7O13C 62,2
  Ашарит Mg2B2O5 . H2O 41,4
  Котоит Mg3(BO3)2 35,5
  Суанит Mg2B2O5 46,3
  Преображенскит Mg8[B5O7(OH)4] . H2O 51,2
  Людвигит (Mg,Fe)2Fe(BO3)O2 12–17
Боросиликаты Датолит Ca2B2(SiO4)2(OH)8 21,8
  Данбурит CaB2(SiO4)3 28,3
Боралюмосиликаты Аксинит Ca2(Mg,Fe)Al2BSiO4O15(OH) 5–8
  Турмалин (Na,Ca)(MgAl)6[B3Al3Si6(O,OH)30 7–12

Лекция 11. АСБЕСТ

Общие сведения об индустриальном сырье. Многие виды неметаллического минерального сырья представлены вполне определенными минералами с их специфическими физическими свойствами и химическим составом и непосредственно используются в промышленности в своем естественном виде. Такое сырье обычно принято называть индустриальным, или индустриально-техническим. Его переработка сводится к извлечению из горной массы промышленно ценных минералов и осуществляется механизированным способом (флотация, воздушная, магнитная, электромагнитная сепарация и т. п.) либо вручную. Наиболее характерными представителями этой группы минерального сырья являются асбест, графит, слюды, барит, магнезит, флюорит и др.

Минералогия. Асбестами называютсяминералы, которые легко расщепляются на тончайшие прочные и гибкие волокна, выдерживающие высокие температуры. К ним относятся хризотил-асбест, крокидолит, амозит, антофиллит, иногда тремолит, актинолит, режикит и др. По своей атомной структуре хризотил-асбест принадлежит к минеральной группе серпентина, а все остальные – к группе амфиболов.

Хризотил-асбест («белый асбест») – волокнистая разновидность водного силиката магния – серпентина. Состав его отвечает формуле Mg6[Si2O5](OH)8 или 3MgO . 2SiO2 . 2H2O. В качестве изоморфной примеси, замещающей оксид магния, присутствует FeO, а механическими примесями являются Fe2O3, Al2O3, Cr2O3, MnO, NiO, CaO, Na2O и Н2О. Элементарные кристаллы-волокна обладают трубчатым строением и имеют форму полых цилиндров с внешним диаметром 260 А, внутренним – 130 А и толщиной стенок 65 А. Хризотит-асбест слагает жилки в темно-зеленых серпентинитах. Характеризуется высокой температурой плавления (1521 0С), при температуре 700 о С теряет конституционную воду и становится хрупким. Твердость его 3–3,5, средняя плотность – 2,5 г/см3. Хризотит-асбест щелочеустойчив, но мало устойчив к воздействию кислот, обладает высокими сорбционными, тепло-звуко- и электроизоляционными свойствами. Волокна его имеют длину от сотых долей миллиметра до 250–300 мм, обычно до 6–7 мм.

Крокидолит («голубой или синий асбест») – волокнистая разновидность рибекита. Кристаллизуется в моноклинальной сингонии. Химический состав крокидолита выражается формулой Na2Fe5[Si4O11]2(OH)2 или Na2O . 3FeO . Fe2O3 . 8SiO2 . H2O. Встречается в поперечно-волокнистых жилках. Температура плавления – 1193 о С. По механической прочности не уступает хризотил-асбесту, но теряет конституционную воду при температуре 200–500 о С. Обладает высокими тепло- и электроизоляционными свойствами. Обычная длина волокна 1,5–30 мм, максимальная – 75 мм.

Амозит («коричневый асбест») – это водный магнезиальный силикат сложного и непостоянного состава с большим содержанием глинозема. Его химический состав MgFe3[Si4O11]2(OH)2 или MgO . 6FeO . 8SiO2 .H2O. Цвет амозита пепельно-серый до коричневого, после извлечения из породы – белый. Температура плавления – 1100–1200 о С, устойчив к воздействию кислот и щелочей. Для него характерна большая длина волокна, в среднем 100–175 мм.

Применение в промышленности. Асбесты широко применяются во многих отраслях промышленности. Использование их основано на охарактеризованных выше свойствах асбестовых минералов, а также в зависимости от длины волокна. Существует два класса асбестов – текстильное волокно и группа строительных сортов.

Особенно широкое применение имеет хризотил-асбест. К текстильному асбесту относят сорта с длиной волокна более 8 мм. Асбестовое волокно используется в производстве пряжи и тканей, идущих для изготовления защитных огнестойких костюмов, брезентов, тормозных лент, дисков сцепления, электроизоляционных лент, прокладок, фильтров и других видов продукции.

В шиферно-картонно-бумажном производстве хризотил-асбест применяется для изготовления шифера, асбоцементных труб для канализации, водопровода, для получения асбестовой бумаги и картона, а также в производстве тепло- и электроизоляционных смесей и теплостойких пластмасс. Сорта асбеста с короткой длиной волокна в смеси с цементом широко используются в производстве строительных материалов (асбоцементные плиты, листы для внутренней облицовки зданий и т. п.).

Амфибол-асбесты (крокидолит, амозит и др.) применяются в химической промышленности для производства различных кислото-щелочных изделий (фильтров, прокладок, пластмасс и др.), а их длинноволокнистые сорта являются текстильным сырьем.

Типы руд. В природе волокна асбеста встречаются в агрегатах трех типов. Наиболее часто наблюдаются поперечно- и косоволокнистые агрегаты, слагающие жилы, в которых волокна асбеста ориентированы строго параллельно друг другу, но располагаются или перпендикулярно к стенкам жилы (поперечно-волокнистые жилки), или под косым углом (косоволокнистые жилки). Они характерны в основном для хризотил-асбеста, крокидолита и амозита. Выделяются четыре типа жилкования: 1) простые отороченные жилы (нередко с просечками в центре их); 2) сложные отороченные жилы (серия взаимно параллельных жилок); 3) жилы типа крупной сетки, представленные разнообразно ориентированными поперечно-волокнистыми жилами, иногда пересекающимися между собой, но чаще плавно сопряженными друг с другом; 4) мелкопрожил – серия взаимно параллельных поперечно-волокистых жилок мощностью 2–3 мм, реже 5–6 мм.

Продольно-волокнистые агрегаты образуют жилки, в которых волокно располагается параллельно стенкам. Это обычно длинное волокно, но в основном низкого качества. Продольно-волокнистый асбест встречается в месторождениях хризотил-асбеста и антофиллита. Типичный представитель этой группы – Карачаевское месторождение асбеста на Северном Кавказе.

Спутанно-волокнистые агрегаты образованы разно ориентированными пучками, радиально-лучистыми гнездами или тончайшими жилками радиально расположенных иголок и волокон асбеста. Под микроскопом мельчайшие пучки, гнезда и тончайшие жилки волокон представляют так называемое волокно массы («mass fiber»). Агрегаты этого типа свойственны антофиллиту, родуситу и режикиту.

Общетехнические требования и способы добычи. Ценность асбеста помимо огнестойкости и устойчивости к воздействию кислот определяется также длиной его волокна и прочностью. По длине волокна выделяют восемь групп: от 0 (нулевой) до 7-й. Для нулевой группы длина волокна превышает 13 мм, а для седьмой составляет менее 1 мм.

По прочностным свойствам выделяют следующие разновидности асбеста: 1) высокой прочности (прочность на растяжение около 300 кг/мм2); 2) полуломкий, или пониженной прочности; 3) ломкий, или слабой прочности (прочность на растяжение 110–220 кг/мм2).

Асбестовые руды, как правило, разрабатываются с помощью открытых работ. Высокосортное волокно «крюд» нередко добывают вручную. При добыче хризотил-асбеста производят валовую выемку асбестоносных пород. Поскольку содержание волокна в них составляет лишь немногие проценты, приходится при этом перерабатывать огромные объемы горной породы. В настоящее время в мире (Канада, США и др.) наблюдается тенденция к переходу на подземные работы с применением системы отработки с магазинированием или более производительной системы с массовым поэтажным обрушением.

Ресурсы и запасы. Запасы (общие) асбестового волокна всех минеральных видов в мире (без России и Китая) составляют около 100 млн т, из них на хризотил-асбест приходится около 95 %. В странах СНГ общие запасы хризотил-асбеста превышают 180 млн т. Основные ресурсы и запасы этого минерального сырья сосредоточены в России и Канаде.

Крупными считаются месторождения хризотил-асбеста с запасами волокна (млн т) более 5, средними – 0,5–5, мелкими – менее 0,5. Для месторождений амфибол-асбеста принято следующее деление (тыс. т): крупные – более 50, средние – 5–50 и мелкие – менее 5.

Генетические типы промышленных месторождений. В настоящее время выделяются четыре главнейших геолого-промышленных типа месторождений асбеста.

Первый тип – линзо- и трубообразные залежи и жилы с хризотиловой минерализацией в серпентинизированных ультрабазитах. С этим типом связаны наиболее крупные месторождения хризотил-асбеста (Баженовская группа на Урале, Тетфордский пояс в провинции Квебек в Канаде и др.). По характеру жилкования (строению жил асбеста) выделяются три подтипа – баженовский, лабинский и карачаевский.

Месторождения баженовского подтипа представляют собой крупные (до 600 м) крутопадающие тела, характеризующиеся концентрически-зональным строением, обусловленным различными типами асбестоносности: мелкопрожила, мелкой и крупной сеток, простых и сложных жил. К этому типу относится большинство месторождений Урала (Баженовское, Киембаевское, Джетыгаринское), Сибири (Саянское, Молодежное и др.), Канады (Джеффри, Блэк-Лейк, Клинтон-Крик и др.), Зимбабве (Машаба, Шабани) и других стран.

Месторождения лабинского подтипа представлены простыми или сложными жилами поперечно-волокнистого асбеста. Наиболее типичные представители – месторождение Лабинское на Северном Кавказе, Нью-Амиантус в ЮАР и др.

Месторождения карачаевского подтипа характеризуются продольно-волокнистым жилкованием по плоскостям трещин и скольжением в серпентинитах (Карачаевское месторождение в России, Ешкеульмесское в Казахстане, Ист-Броутон в Канаде и др.).

Образование хризотил-асбеста в серпентинизированных и стратиформных массивах ультрабазитов связано с воздействием гидротермальных растворов, природа которых дискуссионна. Процесс серпентинизации ультраосновных пород происходил под действием кремнекислых либо углекислых гидротерм:

3 (Mg, Fe)2SiO4 + 4H2O + SiO2 = 2 H4(Mg, Fe)3Si2O9;

оливин серпентин

2 (Mg, Fe)2SiO4 + 2H2O + CO2 = H4 (Mg, Fe)3Si2O9 + (Mg, Fe)CO3

оливин серпентин брейнерит

Второй тип – пластовые и жилообразные зоны серпентинизации с хризотиловой минерализацией в метаморфизованных магнезиальных карбонатных толщах. Втречаются значительно реже месторождений первого типа. Для них наиболее характерны единичные жилы (Аспогашское месторождение в России, месторождения в штате Аризона). Иногда наблюдаются сетчатые жилы, мелкопрожил, просечки (Вангырское месторождение на Полярном Урале, месторождения в Китае и др.). Все месторождения этого типа считаются контактово-метасоматическими. Они локализованы в магнезиальных карбонатных породах вблизи контакта с изверженными основными или кислыми породами. Серпентинизация и асбестообразование происходили в гидротермальную стадию контактового метасоматоза по доломитам в условиях привноса кремнекислоты:

3CaMg(CO3)2 + 2H2O + 2SiO2 = H4Mg3Si2O9 + 3 CaCO 3 + 3CO2.

доломит серпентин кальцит

Достоинством асбестового волокна месторождений этого типа является исключительно низкая железистость, что предопределяет использование его в электротехнической промышленности.

Третий тип – пластовые жилы с крокидолитом и амозитом в железо-кремнистых породах типа железистых кварцитов и яшм близ контактов с доломитами. Месторождения этого типа известны в ЮАР (Трансвааль и Капская провинция), в Западной Австралии.

Четвертый тип – гнездо-, линзо- и штокообразные тела с антофиллит-асбестовой минерализацией в метаморфизованных ультрабазитах амфиболито-гнейсовых комплексов. Характерна тесная связь месторождений этого типа с метаморфизованными ультраосновными породами в составе амфиболито-гнейсовых комплексов регионального метаморфизма. Типичные представители – Сысертское месторождение на Урале, Бугетысайское в Мугоджарах, месторождения Финляндии, США и других стран.

Геология месторождений асбеста. В СНГ крупнейшим по запасам и экономическому значению является Баженовский асбестоносный район, находящийся в Свердловской области. Здесь выявлен ряд месторождений, крупнейшим из которых является Баженовское (близ г. Асбест), открытое в 1885 г. русским землемером А. П. Лодыженским. Это месторождение приурочено к Баженовскому массиву гипербазитов, входящему в состав полосы габбро-перидотитов Среднего Урала, простирающейся в субмеридиональном направлении примерно на 180 км. Баженовский гипербазитовый массив также имеет субширотное простирание, длина его составляет около 30 км, ширина – 1,1–3,5 км, площадь – 75 км2.

Тектоническими разломами гипербазитовый массив разбит на ряд блоков. Вдоль зон разломов гипербазиты (гарцбургиты, пироксениты
и др.) подверглись гидротермальным преобразованиям и превращены в серпентиниты, тальк-карбонатные, кварц-карбонатные и другие породы. На месторождении выявлено 28 промышленных залежей хризотил-асбеста. Форма их эллипсоидальная, штоко- и линзообразная. Простирание всех залежей субмеридиональное, падение – от крутого (70–80о) до вертикального.

Для залежей характерно зональное строение. Центральные (ядерные) части представлены перидотитами и не содержат промышленной асбестизации. По направлению к периферии от них сначала появляется зона простых и сложно отороченных жил, затем зона крупной сетки, далее – зона мелкой сетки, зона мелкопрожила и зона просечек с единичными жилами асбеста.

Месторождения Баженовского асбестоносного района являются крупнейшими в мире, эксплуатируются рядом крупных карьеров. Карьеры имеют размеры в длину до 4 км при ширине до 1,5 км. Глубина отдельных из них достигает 200 м. Ежегодно добыча составляет 1,5–2 млн т минеральной массы.

Месторождения амозита и крокидолита ЮАР. Основные месторождения амозита сосредоточены в провинции Трансвааль в пределах обширного рудного поля, представляющего дугообразную полосу длиной 100 км, окаймляющую северо-восточное окончание Бушвельдского интрузивного комплекса. В геологическом строении рудного поля принимают участие породы трансваальской супергруппы докембрия (кварциты, доломиты, железистые кварциты, яшмы, сланцы и др.). Амозит-асбестовая минерализация приурочена к толще железистых кварцитов и яшм, перекрывающей доломиты и смятой в пологие синклинальные и антиклинальные складки. Максимальная мощность этой толщи достигает 700 м.

Амозит-асбест синевато-серый, поперечно-волокнистый, образует серию согласных прожилков, содержащих крупные кристаллы грюнерита и скопления графита. Амозитсодержащие слои подстилаются и перекрываются железистыми кварцитами. В пределах каждого их слоев фиксируется до 5–6 параллельных прожилков со средней длиной волокна 10–12 см. Несколько слоев с амозит-асбестовой минерализацией образуют четко стратифицированную продуктивную пачку. В разрезе железистых кварцитов яшм наблюдаются четыре такие пачки мощностью до 10 м каждая.

Месторождения крокидолита находятся в Капской провинции и сосредоточены в пределах полосы, вытянутой на 400 км и шириной до 45 км. Они связаны с образованиями той же трансваальской супергруппы докембрия. Крокидолитовая минерализация приурочена к группе гхаап, сложенной преимущественно доломитами с пачками полосчатых железистых кварцитов. Главная промышленная зона представляет чередование грубо- и тонкослоистых магнетитовых кварцитов с согласными жилами поперечно-волокнистого крокидолита. Выделяется до восьми асбестоносных жил со средней длиной волокна 15–20 мм. Зона промышленной крокидолитовой минерализации имеет прерывистый характер. Разработка осуществляется посредством небольших открытых горных выработок.

Лекция 12. БАРИТ И ВИТЕРИТ

Геохимия и минералогия. Барий не имеет широкого распространения в земной коре. Кларк его равен 0,05 %. Генетически барий связан с кислыми магматическими породами. Он входит в состав многих минералов – полевых шпатов, биотита, мусковита и др. Промышленное значение имеют только два минерала – барит и витерит.

Барит – сульфат бария, или тяжелый шпат (BaSO4), встречается в виде зернистых масс и хорошо очерченных кристаллов нередко крупных размеров. Кристаллизуется в ромбической сингонии, образует таблитчатые призматические кристаллы. Характерны зернистые, пластинчатые, лучисто-волокнистые, столбчато-волокнистые и другие агрегаты. Обычно он имеет белую или светло-серую окраску, но может также обладать голубоватым, коричневатым или почти черным цветом. В барите барий иногда замещается стронцием (баритоцелестин, целестобарит), свинцом (хокутолит, англезиобарит) и кальцием (кальциобарит). Твердость его –2,5–3,5.

Основным технологическим свойством барита является большая его плотность (4,3–4,6 г/см3). Из других свойств характерны высокая адсорбционная способность к рентгеновскому излучению, нерастворимость в воде и слабых кислотах, прозрачность крупных кристаллов, высокое содержание бария, белизна, ядовитость бариевых соединений.

Витерит – карбонат бария (BaCO3), содержит 77,7 % ВаО. Кристаллизуется в ромбической сингонии, характерны короткопризматические, табличные и дипирамидальные кристаллы. Основными примесями являются стронций и кальций. В природе встречается в виде зернистых, столбчатых, почковидных, волокнистых и листоватых агрегатов. Блеск стеклянный. Твердость витерита 3–3,5, плотность – 4,3 г/см3, легко растворяется в соляной кислоте.

Применение в промышленности. Основным потребителем барита является нефтедобывающая промышленность (около 55–70 %). Барит используется в буровых растворах в виде порошкообразной добавки при бурении нефтепоисковых, разведочных и эксплуатационных скважин. Применение барита в этих целях объясняется его высокой плотностью, инертностью, чистотой и относительной дешевизной.

На втором месте по потреблению барита и витрита находится химическая промышленность. Химически осажденный сульфат бария представляет пигментирующий наполнитель красок, бумаги, резины, линолеума. Хлористый барий применяется в кожевенном и текстильном производстве; карбонат бария – в керамических глазурях и эмалях; оксид бария – в сигнальных ракетах и детонаторах.

Дробленый барит используется в качестве заполнителя бетона в покрытиях подводных нефте- и газопроводов в тех случаях, когда желательны высокий вес и химическая инертность данных конструкций. Этот вид использования барита будет, несомненно, возрастать по мере развития сети планируемых подводных нефте- и газопроводов.

Типы руд. Сырьевая база баритдобывающей промышленности представлена как собственно баритовыми, так и комплексными рудами. По минеральному составу среди собственно баритовых руд выделяют:
1) мономинеральные; 2) кварц-баритовые; 3) флюорит-баритовые; 4) глинисто-баритовые; 5) песчано-баритовые; 6) сульфидно-баритовые. Комплексные руды разделяются на барит-полиметаллические, редкометалльно-барит-флюорит-железорудные, барит-колчеданные. Барит из этих руд извлекается попутно.

Витеритовые руды встречаются редко. Обычно витерит в том или ином количестве присутствует в баритовых рудах, возникая в результате метасоматического замещения барита. Наиболее характерны барит-витеритовые руды.

Общетехнические требования. Руды барита и витерита (за исключением мономинеральных) не отвечают требованиям промышленности по содержанию BaSO4 и вредных примесей и подвергаются обогащению. Основными вредными примесями в них являются SiO2, Fe2O3 и растворимые в воде соли. Наиболее легко обогащаются песчано-баритовые и глинисто-баритовые руды, труднее всего – барит-кварцевые и барит-флюоритовые руды (особенно при тонком взаимном прорастании этих минералов и повышенном содержании оксида железа). Переработка этих руд рентабельна при содержании барита более 35–40 %.

В результате обогащения получают концентрат, кусковой и молотый товарный барит. Товарный барит делится на четыре сорта: высший, первый, второй и третий – с содержанием BaSO4 не менее 95, 90, 85 и 80 % соответственно.

Различные отрасли промышленности предъявляют особые требования к качеству барита. Требования к бариту в нефтехимической промышленности: плотность – 4,0–4,2 г/см3, содержание водорастворимых компонентов не более 0,35 %. Барит, используемый в химической промышленности, по качеству должен быть не ниже второго сорта, а витеритовые руды должны содержать (%): BaCO3 – не менее 36, BaSO4 – не более 56, R2O3 – до 1,5 и СаО – до 7. Тонкоразмолотый барит, служащий инертным наполнителем твердой резины, белой бумаги и картона, должен содержать: BaSO4 – 98–99 %, CaO – до 36 %, следы R2O3 и SiO2 при полном отсутствии Fe, Mn Cu, Pb и высокой его белизне.

Ресурсы и запасы. Мировые прогнозные ресурсы барита оцениваются примерно в 2 млрд т. Более половины их сосредоточено в странах Азии, главным образом в Казахстане и Китае. Запасы барита общие разведаны в 61 стране мира и составляют около 628 млн т, а запасы подтвержденные – 364 млн т. Наиболее крупные запасы барита подтвержденные сосредоточены в Азии и Америке, и среди стран лидирующие позиции занимают Казахстан, Китай, США и Россия (табл. 7).

В настоящее время мировая добыча барита составляет более 6 млн т. Основной объем добычи (более 65 %) обеспечивают Китай, США, Индия и Мексика.

Генетические типы промышленных месторождений. Генетически превалирующее большинство баритовых и комплексных баритсодержащих месторождений являются гидротермальными. Выделяются еще месторождения, образовавшиеся в процессе осадконакопления (хемогенные) и выветривания. Месторождения барита магматического типа отсутствуют. Это обусловлено тем, что в процессе магматической дифференциации барий, поступающий из глубинных очагов, рассеивается, изоморфно замещая калий в породообразующих и акцессорных минералах, не образуя промышленных скоплений.

Среди всего разнообразия баритовых месторождений выделяются три основных типа: 1) жильный; 2) стратиформный; 3) песчано-валунный в корах выветривания.

Жильный тип объединяет эпигенетические гидротермальные жилы, неправильные тела, линзы и зоны брекчирования, образовавшиеся путем выпадения барита из гидротермальных растворов. Отдельные жилы прослеживаются по простиранию до 1–2 км. Мощность жил и линз варьирует от сантиметров до нескольких метров, изредка до 10–20 м. Минерализованные зоны брекчирования представлены обломками вмещающих пород, сцементированных баритом и витеритом. Наиболее характерны баритовые, барит-витеритовые, барит-сидеритовые, кварц-баритовые и кварц-кальцит-баритовые жилы. Классическими представителями этого типа являются месторождения Елы-Су и Арпакленское в Туркмении, Дрождяк, Златник и Запаленица в Чехии, Чордская и Кутаисская группа месторождений в Грузии и др.

Стратиформный тип представлен согласными пластовыми и линзовидными залежами барита в осадочных и вулканогенных породах. Среди них имеются месторождения как хемогенно-осадочного, так и гидротермально-метасоматического генезиса. Размеры баритовых залежей достигают нескольких квадратных километров, мощность – до 15–20 м, содержание барита высокое (50–95 %). К рассматриваемому типу принадлежат месторождения в штатах Невада и Арканзас (Магнет-Ков), Баллино (Ирландия), Апшринское (Грузия), Джалаирское (Казахстан) и др.

Песчано-валунный тип месторождений кор выветривания включает остаточные залежи элювиальных и делювиальных глин с обломками барита. Величина баритовых обломков по размерности колеблется от песчаных до валунных и глыбовых. Месторождения этого типа широко распространены в штатах Миссури и Джорджия, в России данный тип представлен Медведевским месторождением на Урале.

Геология месторождений барита. В СНГ одним из крупнейших является Апшринское месторождение барита. Оно расположено в Грузии, в пределах Абхазского хребта (севернее г. Сухуми). Приурочено к юго-западному крылу Апшринской антиклинали. Центральная часть этой структуры выполнена вулканогенно-осадочными породами байоса (порфириты, туфы, туфопесчаники), а юго-западное крыло – терригенно-карбонатными отложениями верхней юры.

Продуктивными являются массивные известняки, в которых неравномерно развита баритовая минерализация и сопровождающая ее доломитизация. В пределах рудного поля эти известняки обнажаются в виде полосы, вытянутой на 5 км. На месторождении мощность рудной толщи составляет 20–40 м, она прослеживается по простиранию на 800 м и по падению на 250 м (под углом 15–30 о). Рудная залежь осложнена крутопадающими сбросами с амплитудами смещения блоков в десятки метров.

Руды преимущественно барит-карбонатные. Главные минералы – барит и доломит, второстепенные – сидерит, халцедон, кварц, кальцит, редкие – арагонит, гематит, пирит, марказит, халькопирит, киноварь. Среднее содержание BaSO4 в промышленных рудах составляет 48,6 %, количество стронция варьирует от 0,006 до 1,0 %. Месторождение разрабатывается открытым способом. Руды подвергаются флотационному обогащению.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 577 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2305 - | 2068 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.