Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Введение 1 страница




Развитие учения о твердых полезных ископаемых. Горючие полезные ископаемые обычно называют каустобиолитами (kausto – горючий, bios – жизнь, litos – камень). Этот термин введен в науку немецким палеоботаником Г. Потонье. Каустобиолиты являются одним из источников энергии, важным технологическим топливом в черной металлургии, а также используются в химической промышленности.

Научные представления об органическом происхождении каустобиолитов (уголь) впервые были высказаны учеными еще в первой половине XVI в. М. В. Ломоносов в своей работе «О слоях земных», напечатанной в 1763 г., изложил соображения о происхождении каменного угля из торфяников. В дореволюционной России изучением геологии угольных месторождений начали заниматься позже, чем за границей. В 1721 г. был открыт Донецкий, в 1722 г. – Подмосковный и Кузнецкий угольные бассейны. Особый прогресс был достигнут в связи с организацией в 1882 г. Геологического комитета. Одной из крупных его работ явилось составление геологической карты Донецкого бассейна в масштабе 1:42 000. В это время были заложены основы геологии каустобиолитов. Огромный вклад в развитие учения о твердых полезных ископаемых внесли следующие геологи: А. П. Карпинский, Л. И. Лутугин, П. И. Степанов, А. А. Гапеев, В. И. Яворский и др. В 1912 г. курс «Каменный уголь и другие виды твердого ископаемого топлива» (Н. Лебедев) был одним из первых опубликован в России, в Екатеринославе.

За годы Советской власти учение о геологии каустобиолитов получило дальнейшее развитие: изменился подход к изучению месторождений и бассейнов, больше внимания стало уделяться условиям образования каустобиолитов, исследованию вещества угля, геохимии, различным технологическим процессам и т. д. В 1937 г. опубликована крупная коллективная работа под редакцией П. И. Степанова «Геология месторождений ископаемых углей и горючих сланцев». После Великой Отечест­венной войны были изданы карты, атласы и учебники.

Во второй половине ХХ в. развитие мировой угольной науки и практики отмечено большими достижениями в области учения об угленосных формациях, условиях их образования, закономерностях размещения месторождений и бассейнов, изучения вещественного состава углей и горючих сланцев. Значительные успехи получены в развитии скважинных геофизических исследований, позволивших резко повысить информативность геологоразведочных данных и степень изучения качества углей.

В Беларуси изучением твердых каустобиолитов (бурый уголь, горючие сланцы, торф) занимались Д. М. Корулин, А. Н. Брусенцов, Ю. И. Горький, Л. Ф. Ажгиревич, П. А. Пидопличко, И. Я. Яременко и др.

Топливно-энергетические ресурсы. На земном шаре известно более 2900 месторождений угля с общими запасами 14,3 трлн т (12,0 трлн тут*), сотни месторождений горючих сланцев с запасами сланцевой смолы 550 млрд т и многие тысячи месторождений торфа с общими запасами 350 млрд т (105 млрд тут). В общих мировых запасах ископаемого топлива на долю углей, горючих сланцев и торфа приходится 93 %, а на долю нефти и газа около 7 % (условного топлива соответственно 74 и 26 %). В то же время в топливно-энергетическом балансе мира соотношение этих источников энергии обратное: доля нефти и газа превышает 65 %, а твердого топлива менее 30 %.

Во второй половине ХХ в. в результате проведения интенсивных геологоразведочных работ были открыты крупные месторождения не только в наиболее богатых углем и сланцами странах Евразии и Северной Америки, но и в Австралии, Южной Америке и Африке, а также в Беларуси. Во многих странах разрабатываются и реализуются программы по расширению добычи и использованию угля и горючих сланцев.

Геология углерода и происхождение твердых горючих ископаемых. По исходному органическому веществу, условиям его накопления и последующему геологическому изменению между всеми горючими ископаемыми существует генетическая связь.

Круговорот углерода в природе. Образование твердых горючих ископаемых обязано происходящему в биосфере, в частности в растениях, процессу фотосинтеза. Кларк углерода в литосфере равен 0,23 % (по А. П. Виноградову). Среднее содержание углерода составляет (%): в ультраосновных и основных породах – 0,01, в средних – 0,02 и в кислых – 0,03. В осадочных породах 4/5 углерода находится в карбонатной форме, значительная доля приходится на органический углерод (угли, горючие сланцы, нефть и т. д.).

Общее количество углерода в природе достигает 610 . 109 т. Ежегодно не менее 1 млрд т углерода захороняется в осадок на длительное время, а значительное количество его навсегда уходит из системы атмосфера–гидросфера–биосфера. За 1–1,5 тыс. лет весь углерод атмосферы мог быть связан в карбонатных и органических отложениях. Однако этого не происходит в связи с систематическим пополнением углекислого газа атмосферы за счет вулканических эманаций.

Часть органического вещества после отмирания организмов подвергается разложению бактериями с выделением при этом углерода в газообразном состоянии в виде СО2 и СН4. Другая часть органического вещества минерализуется, и углерод переходит в состав минеральных соединений (СаСО3, MgСО3, FeСО3 и др.). Минеральные соединения углерода в процессе погружения осадочных образований при нагревании разлагаются, в результате чего образуются СО2 и частично СH4, которые снова возвращают углерод в атмосферу. Циклический процесс круговорота углерода в природе имеет очень большое геохимическое значение. По подсчетам В. А. Успенского, длительность круговорота углерода колеблется от 100 до 300 лет.

Исходное углеообразующее вещество. По составу, строению и условиям жизни исходные для образования твердых горючих ископаемых растения разделяются на две основные группы: высшие и низшие. Высшим растениям свойственны отчетливо выраженная корневая система, ствол, стебель, листья. Они приспособлены к жизни в наземных условиях. Низшие растения сложены преимущественно одинаковыми клетками и обитают в водной среде. Высшие растения состоят главным образом из целлюлозы, или клетчатки, лигнина, белков, жиров, восков и смол, а также гемицеллюлозы. Кроме того, каждая растительная клетка содержит некоторое количество минеральных веществ, дающих при сжигании смолу. Из-за преобладания в растениях тех или иных тканей, как, например, в высших растениях целлюлозы и лигнина, а в низших – жиров, восков и смол, химический состав различных групп растений (альги, папоротника, хвоща, хвойных и лиственных деревьев, травы) существенно различен.

Типы накопления исходного вещества. Различают два типа отложения исходного вещества – автохтонный и аллохтонный. Автохтонный тип – это такой тип отложения, при котором первичные организмы обитали на местах современного залегания каустобиолитов. Существуют две разновидности автохтонии – водная и наземная. Аллохтонный, или приносной, тип– это такой тип отложения, при котором растения после гибели транспортируются с места произрастания.

Главным признаком автохтонии служат корневые остатки или пни в почве пласта, наличие и сравнительно хорошая сохранность мелких частиц растений, в большинстве случаев не очень большое количество минеральных примесей. Для аллохтонного накопления характерны плохая сохранность и измельченность растительных остатков и в большинстве случаев – высокая минерализация полезного ископаемого.

Процессы разложения органического вещества. Характер разложения растительности зависит от среды, в которую она попадает после гибели, где могут идти четыре различных процесса: тление, перегнивание, оторфение и гниение. Тление происходит при полном доступе кислорода, вследствие чего органическая часть растения полностью окисляется и уходит в форме газов в атмосферу. Из минеральной части растений образуются твердые остатки. Перегнивание – неполное тление при недостаточном доступе воздуха. В результате происходит неполное окисление. Этот процесс характерен образованием твердых продуктов, богатых кислородом, – гумусовых веществ. Оторфение – промежуточное звено между перегниванием и гниением. Образующиеся в результате этого процесса твердые продукты состоят главным образом из гумусовых веществ, в состав которых входят гуминовые кислоты. Гниение – восстановительный процесс, происходящий при полной изоляции от доступа воздуха в илах и застойных водах и приводящий, как правило, к образованию сапропелитов.

Стадии преобразования органических остатков. Выделяются три стадии преобразования органического вещества: биогенная, химическая и геологическая. На первой, биогенной (или биохимической),стадии происходят преобразования исходного вещества, агентами разложения являются грибки, микробы и бактерии, которые в процессе жизнедеятельности перерабатывают погибшие растительные организмы.

Вторая, химическая, стадия преобразования происходит довольно длительный период времени и включает огромное число цепных химических реакций. Эти реакции идут в направлении создания коллоидной массы. В условиях обводненности без доступа кислорода исходное вещество подвергается гелификации. Процесс гелификации – это преобразование исходной растительной массы в коллоидные вещества – гель. Гелифицированные микрокомпоненты углей образуются либо путем набухания гумифицирующихся растительных тканей, либо при коагуляции гумусовых растворов. При спорадически ограниченном доступе кислорода, создающем окислительную реакцию, происходит фюзенизация. Фюзенизация – это процесс изменения углеобразующего расти-
тельного материала в окислительной среде, при котором лигнин и целлюлоза превращаются в необратимый твердый продукт – фюзен.

Третья, геологическая, стадия начинается с захоронения осадка под минеральной кровлей. Исходное ОВ претерпевает изменение под воздействием возрастающей температуры и давления. Происходящие в результате этого процессы изменения органического осадка называются углефикацией. При этом осадок обезвоживается, уплотняется в 5–6 раз, полимеризуется, жидкие вещества превращаются в твердые. Гумусовая кислота, окрашивающая болотную воду в коричневый цвет, превращается в твердое гуминовое вещество, слагая так называемую «основную массу» угля. Процесс разложения низших растений и организмов, приводящий к образованию веществ, близких к углеводородам (УВ), называется битуминизацией.

Необходимые предпосылки для углеобразования. Важнейшими предпосылками являются: фитологические, климатические, геоморфологические и тектонические. Фитологические предпосылки создают возможность накопления исходного вещества. Уже в раннем архее (3,7–3,5 млрд лет тому назад) установлено наличие биогенных формаций с относительно высоким содержанием органического углерода. Активное накопление углеобразующей растительности началось в позднем силуре–раннем девоне, когда произошел выход водной растительности на сушу. Весь отрезок времени эволюции растений от кембрийского периода до нашего времени подразделяется на четыре эры развития растительности: талассофит, палеофит, мезофит и кайнофит.

Климатические предпосылки определяют как масштабы накопления исходного материала, так и его морфологию. В глобальном геолого-исто­рическом плане выделялись области с гумидным климатом, благоприятные для торфо- и углеобразования, и области с аридным климатом, менее благоприятные для образования больших масс растительности.

Геотектонические предпосылки играют важную роль в торфо- и углеобразовании, особенно медленные эпейрогенические вековые колебания с преобладанием нисходящих движений. Этими движениями обеспечивается наращивание мощности массива исходного органического материала, компенсирующего амплитуду погружения и его захоронение в недрах.

Геоморфологические предпосылки обусловливают обстановку для сохранения накопившегося массива исходного вещества. Они действуют на стадии торфообразования вплоть до перекрытия торфяного массива осадочными минеральными образованиями.

Лекция 2. ТОРФ

Торф – горючее полезное ископаемое, образовавшееся в результате неполного распада растений и содержащее в сухой массе не менее 50 % органического вещества. По внешнему виду торф в естественном состоянии представляет собой волокнистую или пластинчатую массу не вполне разложившихся растительных остатков от светло-бурого до землисто-черного цвета. По теплоте сгорания органической массы торф занимает промежуточное положение между древесиной и бурыми углями. Современные торфяные залежи относятся к голоцену, занимают при мощности торфа 0,3 м общую площадь около 5 млн км2, или около 3,3 % суши.

Торф не обладает геологической устойчивостью в масштабах геологического времени. Из торфяников современной геологической эпохи в ископаемое состояние с образованием угольных месторождений может перейти лишь незначительная часть существующих залежей, которые территориально располагаются в зоне отрицательных движений земной коры.

Предпосылки торфообразования. Основными предпосылками торфообразования являются: 1) развитие растительности, способствующей накоплению биомассы в значительных масштабах на 1 м2; 2) больший и равный единице коэффициент увлажнения; 3) наличие отрицательной формы макро- или микрорельефа, обеспечивающей развитие водоема, в пределах которого происходит торфообразование; 4) преобладание процесса фотосинтеза над процессом распада.

Торфообразование. Формирование торфяников – сложный биохимический процесс преобразования растительной массы, произрастающей на торфяном болоте, в торф. Все свойства торфа формируются в верхнем «торфогенном» слое торфяного болота. Степень разложения торфа, т. е. соотношение гумусового вещества и сохранившихся растительных остатков, определяется высотой и постоянством уровня грунтовых вод. Процессы диагенеза могут проявляться только в торфах, находящихся под сильным давлением большой мощности минеральных отложений. По данным Л. И. Боголюбовой и П. П. Тимофеева, торф со степенью разложения 0–25, 25–50 и 50–75 % подвергается изменениям главным образом в направлении гелификации, и в нем образуются гелинитовые, постгелинитовые и преколинитовые компоненты.

Типы торфяников. В зависимости от приуроченности к элементам рельефа местности выделяются три типа торфяников: 1) верховой – на водоразделах; 2) переходный – на террасах склона водораздела; 3) низинный – в поймах. Каждый из них подразделяется на подтипы и группы.

Низинный тип торфов возникает в условиях богатого минерального питания и увлажнения. Здесь формируется большое разнообразие фитоценозов и, следовательно, видов торфа. Переходный тип торфов образуется в условиях несколько обедненного минерального питания в слабокислой среде и с пониженным привносом аллохтонного материала. Торфы верхового типа формируются в условиях бедного минерального питания с разнообразной, перемежающейся степенью увлажнения.

Растения-торфообразователи. Растительность болот по видовому составу довольно разнообразна. По этому показателю выделяются три группы: 1) мхи; 2) травы; 3) древесные формы и кустарники. Мхи представлены в основном белым (сфагнум) и зеленым (гипнум), реже кукушкиным льном. Сфагнувые мхи произрастают при очень бедном минеральном питании. Они составляют главную часть торфообразователей залежей верхового типа. Характеризуются низким содержанием целлюлозы и небольшим количеством битумов. В отличие от них зеленые мхи, свойственные переходному и низинному типам торфяных болот, обладают повышенной зольностью, высокой концентрацией азотсодержащих веществ и большей устойчивостью против разлагающих агентов.

Травянистые растения представлены тростником, камышом, пушицей, осоками и др. Эта группа торфообразователей характерна для низинного и переходного типа торфяников. В них наблюдается более высокое (до 38 %) содержание целлюлозы, а также повышенное по сравнению с другими растениями количество белковых веществ и относительно высокое содержание битумов.

Древесные торфообразователи чаще всего представлены сосной, елью, лиственницей, березой, ольхой, ивой, а полукустарниковые – багульником, подбелом, голубикой, кассандрой, клюквой, вереском и др. Торфяные болота зарастают не одним каким-то типом растений, а растительными ассоциациями.

Торфяники тропических широт. Торфяники Северного полушария в Евразии и Америке принадлежат к образованиям умеренных широт и не отвечают условиям происхождения палеозойских и мезозойских крупных угольных бассейнов, чаще всего возникавших вблизи морского побережья. Природной моделью древних торфообразующих болот может служить Большое Дисмальское (Гиблое) болото в штатах Северная Каролина и Виргиния. Оно было изучено еще известным английским геологом Ляйеллем.

Это болото расположено на берегу Атлантического океана и лишь на несколько метров возвышается над его уровнем. Оно простирается на 60 км при ширине 40 км. Вся площадь болота покрыта лесом, причем наиболее характерны следующие древесные породы: болотный кипарис, лавровый тополь, белый кедр, сосна. Наиболее приспособлен для жизни на местах, залитых водой, болотный кипарис, развивающий особые корневые образования – пневматофоры, выступающие из воды и служащие путями доставления необходимого воздуха в корневую систему растения. Стволы деревьев у основания сильно расширены, так как своими корнями не могут в воде глубоко проникать в почву. Для устойчивости они нуждаются в других приспособлениях – в расширенной части ствола с расходящимися во все стороны корнями. Подобные приспособления имели деревья палеозойского возраста, которые были описаны А. А. Гапеевым в угленосной толще Кузнецкого бассейна. При сильном ветре деревья легко падают. В этом бассейне толщина торфа, сплошь состоящего из перегнивших корней, листьев, фрагментов ветвей и семян, доходит до 5 м. Прирост торфа за 1 год может составить 2–2,5 мм.

Болота тропического пояса достаточно широко распространены на о. Суматра, на морских побережьях о. Шри Ланка и полуострова Индостан, островах Малайского архипелага и т. д. Здесь широко распространены мангровые деревья. Между их ходулевыми корнями накапливается большое количество материала, привносимого реками и морской водой. Приливы и отливы перемалывают и перетирают этот материал. Полученный из него таким образом черный ил не похож на осадки спокойных вод.

Химический состав торфа. Свойства и химический состав торфа определяются соотношениями образующих его видов растительности и степенью их разложения. Элементный состав горючей массы торфа следующий: углерод 50–60, водород 5–6, кислород 30–40, азот 1–3, сера 1,5–2,5 %. Влажность торфа очень высокая и в естественном состоянии составляет до 96 %. Пористость также высокая и достигает 95 %. У слабо разложившегося торфа теплота сгорания при 40 % влажности составляет 9–10 МДж/кг, а при повышенной степени разложения – до 13 МДж/кг.

В процессе диагенеза торфа происходят изменения в химическом составе: снижается содержание гемицеллюлозы (на 30–60 %), фульвокислот (на 50 %) и негидролизуемого остатка (на 17–35 %), увеличивается содержание гуминовых кислот (на 35–52 %) и битумоидов. По зольности выделяются торфа: 1) бедные золой (содержание золы 0,5–5 %); 2) среднезольные (5–10 %) и 3) богатые золой (10–50 %).

Торфяное месторождение. Торфяным месторождением называется территориально обособленный участок земной поверхности, характеризующийся избыточной увлажненностью, покрытый влаголюбивой растительностью, имеющий торфяную залежь в неосушенном состоянии мощностью не менее 0,7 м и площадью, обеспечивающей возможность практического использования торфа. Месторождения при их объединении во взаимосвязанную систему образуют торфяной бассейн.

Мощность торфяных залежей варьирует от 0,3 до 7–8 м, реже больше. В среднем мощность у торфяников верхового типа с флорой сфагнум-фускум составляет 3,6–4,8 м, у переходного – 2,0–2,5 м, низинного – 1,6–2,0 м.

Закономерности размещения торфяников. Размещение торфяников на земном шаре определяется оптимальным сочетанием предпосылок торфообразования в различных широтах и появлением так называемых поясов торфонакопления. Интенсивное торфонакопление располагается в средних широтах Северного полушария. Протяжность этого пояса составляет 10 000 км, ширина местами превышает 1500 км, а общая площадь составляет 9 млн км2. Ему заметно уступают по протяжности и масштабу торфообразования другие пояса (умеренных широт, полярных и горных областей), в том числе торфяники тропической полосы.

В мировом топливо-энергетическом балансе торф играет незначительную роль: его мировые ресурсы при влажности 30–40 % составляют около 350 млрд т, из них около 150 млрд т сосредоточено в России, по 30–35 млрд т в Канаде и Финляндии, 15 млрд т в США. Мировая добыча торфа составляет 110–140 млрд т.

Торфяные ресурсы Беларуси. В Беларуси около 12,4 % территории покрыто торфяниками. Общая площадь распространения торфяных залежей составляет около 2,5 млн га, в границах промышленных залежей – 1,62 млн га (при мощности пласта не менее 0,7 м). Запасы торфа-сырца оцениваются в 30,4 млрд т. Низинные залежи по площади составляют 80,4 %, по запасам торфа-сырца – 75 %, верховые – соответственно 13,6 и 18,5 %, переходного типа – 6 и 6,5 %.

Естественная влажность современных торфов достигает 88–95 %. Зольность верховых торфов обычно колеблется от 1,5 до 4 %, низинных – от 5 до 15 %. Низинный торф по сравнению с верховым отличается повышенным содержанием СаО (в низинных – 2,25 %, в верховых – 0,28 %) и Fe2О3 (1,33 и 0,13 % соответственно). Элементный состав органической части торфа следующий: углерод 45,5–61,7 %, кислород 28,0–46,1 %, водород 4,8–6,2 % и азот 0,5–2,9 %.

В республике выявлено около 6 500 месторождений торфа. Промышленные запасы торфа составляют 2,5 млрд т, прогнозные ресурсы – 3 млрд т. Разрабатывается несколько сотен месторождений.

Лекция 3. УГОЛЬ: СТАДИЙНОСТЬ
УГЛЕОБРАЗОВАНИЯ, СОСТАВ, СВОЙСТВА
И КЛАССИФИКАЦИЯ

Стадийность углеобразования. Уголь – горная порода растительного происхождения, состоящая из органического и минерального вещества, прошедшего стадию оторфения. Процесс углеобразования является единым и стадийным – от молодых образований (торфов) до качественных углей и далее антрацитов.

Торфяная стадия. Происходит формирование торфяников главным образом за счет высших растений, которые после отмирания подвергаются различным процессам, приводящим к образованию органических кислот. По степени устойчивости составные части растений располагаются следующим образом: легче всего разлагается протоплазма, за которой следуют жиры, лигнин и целлюлоза, затем кутикула, споры и пыльца, наиболее устойчивыми к разложению являются воски и смолы. В результате разложения преобладающих в растениях лигнино-целлюлозных тканей образуются гуминовые кислоты. Эти кислоты сохраняются в торфе и по мере дальнейшего преобразования переходят в твердое состояние в виде гуминовых веществ, составляющих основу гумолитов.

Установление границы торф–бурый уголь по внешним признакам весьма затруднительно. В качестве пограничных данных чаще всего принимают содержание углерода в бурых углях не менее 64 %, влаги 14 %, теплоту сгорания 20,2 МДж/кг, показатель отражения витринита в масле 0,3.

Буроугольная стадия. На этой стадии углеобразовательного процесса торф превращается в бурый уголь. Бурые угли отличаются от торфов более высокой степенью разложения остатков отмерших растений и большим обогащением их углеродом. Для бурых углей характерна бурая и очень редко черная черта, бурое окрашивание раствора едкой щелочи и густо-желтое (до красно-бурого) окрашивание раствора азотной кислоты.

По степени уплотненности, содержанию гуминовых кислот и приближению по внешнему виду к каменным углям бурые угли обычно разделяют на три группы: 1) землистые (в зарубежной литературе «мягкие») – Б1; 2) матовые – Б2; 3) блестящие – Б3.

На многих месторождениях среди бурого угля слабой степени углефикации встречаются залежи слабо разложившейся, сохраняющей свою структуру древесины – лигнина, иногда образующего самостоятельные пласты среди бурых углей.

Превращение бурых углей в каменные. Следующая, более высокая стадия – образование каменных углей. Для разграничения бурых и каменных углей используют методы черты, окрашивания раствора едкой щелочи (КОН) или кипящего раствора разбавленной азотной кислоты. В отличие от бурых каменные угли содержат больше углерода, меньше кислорода и водорода, не имеют свободных гуминовых кислот и не окрашивают раствор едкой щелочи. Химико-технологические свойства каменных углей отличаются от свойств бурых углей и существенно разнятся между собой в пределах каменноугольных стадий в зависимости от вещественного состава. По принятой в бывшем СССР общей классификации граница между бурыми и каменными углями проводится по содержанию углерода (75 %), летучих веществ (45–50 %) и водорода (не более 5,5 %). Следует отметить, что вопрос о непрерывности процесса перехода бурого угля в каменный при повышении температуры и давления, несмотря на то что большинство ученых придерживаются этого мнения, является дискуссионным.

Антрацитовая стадия. Наиболее углефицированным является антрацит – высокометаморфизованный уголь с повышенной плотностью (1,4–1,7 г/см3), черный с металлическим оттенком, с высоким содержанием углерода (не менее 95 %), низким – летучих веществ (8–2 %). Вследствие сильного уплотнения угля на этой стадии его структура и текстура почти неразличимы, резко возрастает вязкость, показатель преломления увеличивается до 2,06. У антрацита выход летучих веществ менее 10 %, водорода до 3 %, углерода не менее 95 %, азота менее 1 %, температура воспламенения 500–600 о С.

Шунгит. Высокообуглероженное аморфное ОВ, занимающее место между антрацитом и органическим графитом. Химический состав шунгита непостоянен. В среднем он содержит 60–70 % углерода, остальная часть – минеральные примеси. Цвет шунгита черный с сильным блеском, твердость 3–4, плотность 1,8–2,0 г/см3, не горюч. И. Б. Волкова и М. В. Богданова обнаружили в шунгите (близ о. Шунга в Карелии) растительные структуры, весьма схожие с древесиной, и установили таким образом принадлежность его к ряду гумитовых.

Метаморфизм углей. Изучение процессов изменения вещества углей и их происхождения немыслимо без исчерпывающего изучения метаморфизма. Метаморфизм каменных углей – это достаточно длительный и сложный процесс изменения свойств и внутримолекулярного строения углей при последовательном увеличении в них содержания углерода и уменьшении летучих компонентов и кислорода. Установлено, что при одном и том же составе исходного материала выход летучих веществ в нижележащем пласте меньше, чем в вышележащем (правило Хильта – Скока).

Различают три вида метаморфизма: 1) региональный, или глубинный, связанный с погружением осадков на значительную глубину; 2) контактовый, обусловленный тепловым влиянием интрузивных или эффузивных масс; 3) динамометаморфизм, или дислокационный, вызванный процессами складкообразования.

Химический состав углей. В зависимости от назначения углей производятся технический и элементный анализы.

Технический анализ. При техническом анализе в стандартных условиях определяют влагу, зольность, выход летучих веществ, характер коксового остатка, содержание серы, теплоту сгорания. Влага и зола угля как вещества, понижающие теплоту сгорания, считаются балластом, остальная часть составляет так называемую горючую массу.

Влага (W) ископаемого угля состоит из общей (или рабочей) и внутренней (или гигроскопической). Внешняя влага на воздухе улетучивается, и уголь переходит в воздушно-сухое состояние. Гигроскопическая влага (W гигр.) удаляется при нагревании угля при температуре 105 о С, и уголь переходит в абсолютно сухое топливо. Содержание рабочей влаги в торфе до 90 %, в бурых углях до 60 %, в каменных углях менее 15 %, в антрацитах до 3 %.

Зола (А) – это твердый остаток, получаемый при сжигании угля. Для сопоставления различных по зольности углей и углей из разных бассейнов вместо аналитической зольности (Аа) пользуются зольностью, пересчитанной на сухое вещество (Ас). По зольности угли подразделяются на малозольные (Ас < 10 %), среднезольные (Ас = 10–30 %) и высокозольные (Ас > 30 %). При содержании золы более 40–45 % порода считается углисто-глинистой, а не углем.

Летучие вещества – смесь газообразных и парообразных веществ, выделяющихся из угля при нагревании до температуры 850 оС без доступа воздуха. В состав их наряду с парами воды входят диоксид и оксид углерода, УВ, кислород, сернистый газ и др. Содержание летучих веществ обычно вычисляют на безводный и беззольный уголь, на так называемую горючую массу (Vг).

Кокс – нелетучий горючий остаток после термического разложения угля и удаления из него летучих веществ. По внешнему виду и прочности он меняется от порошкообразного (бурые угли и антрациты) до хорошо сплавленного, с серебристым металлическим блеском (коксовые угли, некоторые жирные). Процесс образования кокса сопровождается переходом его в пластическое состояние, при котором происходит связывание отдельных зерен в однородную массу, т. е. его спекание. Спекаемость углей в лабораторных условиях определяется различными методами. Наиболее широко применяется метод Л. М. Сапоженикова и Л. П. Базилевича. По этому методу в процессе термического разложения угля регистрируются (в пластометрическом аппарате) изменение объема – вспучивание и усадка Х (мм) – и толщина возникшего пластического слоя Y (мм). Последний параметр принят в промышленной классификации углей в качестве основного показателя, имеющего оптимальную величину в среднем 16–20 мм, а для жирных и коксовых углей – более 20 мм.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 546 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2752 - | 2314 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.