Месторождение Магнет-Ков является наиболее крупным в США. Оно расположено в штате Арканзас близ восточного окончания гор Уошито. Приурочено к восточной части синклинальной складки, опрокинутой на северо-запад. Породы интенсивно трещиноваты, наблюдаются также малоамплитудные тектонические нарушения. Возраст развитых на месторождении пород складчатой толщи – ордовикско-пенсильванский. Пластово-метасоматические тела барита приурочены к нижней части формации глинистых сланцев Стэнли (пенсильваний-миссисипий). Разрез формации Стэнли сложен темноцветными тонкорассланцованными глинистыми сланцами с моногочисленными прослоями тонкозернистых песчаников в нижней ее части.
В плане месторождение барита имеет подковообразную форму с протяжностью от вершины этой подковы до любого конца ее около 1,2 км. На крыльях складки мощность баритоносной зоны составляет 9–17 м, но в замке синклинали она увеличивается до 35 м и более. Нижний контакт баритоносной зоны с глинистыми сланцами или песчаниками резкий, тогда как в кровле баритоносная зона постепенно сменяется вышележащими породами.
Мощность отдельных пластов барита, которые разделены незаместившимися прослоями глинистых сланцев или песчаников, колеблется от 2 до 7,5 см. В свежем состоянии барит имеет серую окраску, обладает плотным сложением, напоминая плотный кристаллический известняк. Барит, залегающий неглубоко от земной поверхности, имеет характерную пластинчатость, ориентированную параллельно поверхности напластования. К плоскостям напластования приурочена рассеянная вкрапленность мелких кристаллов пирита. Содержание его в баритовых рудах на отдельных участках достигает 4 %.
В качестве источника магматогенных гидротермальных растворов предположительно рассматривается округлый шток нефелиновых сиенитов (интрузив Магнет-Ков), расположенный примерно в 3 км к западу от баритового месторождения. В составе исходных пород этого интрузива содержание ВаО составляет около 0,3 %.
Месторождение разрабатывается открытым способом. Производится валовая выемка горной массы, в которой содержится около 70 % барита. Пустые породы представлены кварцем, глинистыми сланцами и оксидами железа. После тонкого помола и флотации получают порошок с содержанием барита 98 % и плотностью 4,4 г/см3.
Таблица 7
Запасы барита (млн т) и среднее содержание BaSO4 в рудах (%) [8]
Страна, часть света | Запасы общие | Запасы подтвержденные | Их % от мира | Содержание в баритовых рудах | Содержание в комплексных рудах |
Россия | 24,70 | 16,50 | 4,5 | 14,5 | |
Европа | 32,30 | 16,31 | 4,5 | – | – |
Греция | 4,00 | 2,00 | 0,5 | – | |
Италия | 2,00 | 2,00 | 0,5 | – | |
Франция | 2,50 | 2,00 | 0,5 | ||
Азия | 447,49 | 25,27 | 69,5 | – | – |
Грузия | 8,00 | 6,00 | 1,6 | ||
Индия | 29,50 | 20,50 | 5,6 | ||
Индонезия | 3,10 | 3,08 | 0,8 | – | |
Казахстан | 192,00 | 154,00 | 42,3 | – | |
Китай | 150,00 | 35,00 | 9,6 | – | |
Малайзия | 4,00 | 2,00 | 0,5 | – | |
Таиланд | 14,00 | 9,00 | 2,5 | – | |
Турция | 17,00 | 4,00 | 1,1 | – | |
Узбекистан | 11,00 | 10,00 | 2,7 | – | – |
Япония | 3,00 | 2,00 | 0,5 | – | |
Африка | 32,78 | 20,55 | 5,7 | – | – |
Алжир | 7,00 | 2,00 | 0,5 | – | |
Морокко | 11,00 | 10,00 | 2,7 | ||
Тунис | 5,00 | 3,20 | 0,9 | – | – |
Америка | 86,45 | 55,60 | 15,3 | – | – |
Канада | 13,00 | 11,00 | 3,0 | – | – |
Мексика | 8,00 | 7,00 | 1,9 | – | |
Перу | 5,00 | 4,00 | 1,1 | – | |
США | 50,00 | 28,00 | 7,7 | ||
Чили | 8,00 | 4,00 | 1,1 | – | |
Океания и Австралия | 4,50 | 2,00 | 0,5 | – | – |
Австралия | 4,50 | 2,00 | 0,5 | – |
Лекция 13. ГРАФИТ
Минералогия и физические свойства. Графит – мягкая, черная, жирная на ощупь модификация элементарного углерода. Он кристаллизуется в гексагональной сингонии и встречается нередко в виде шестигранных таблитчатых кристаллов. Чаще всего графит образует мельчайшие чешуйки или листочки, слагая листоватые агрегаты или неправильные скрытокристаллические массы. Кристаллическая структура его характеризуется весьма крепкой ковалентной гомеополярной связью атомов углерода в пределах слоя, но весьма слабой межслоевой молекулярной ван-дер-ваальсовской связью. Твердость графита – 1, плотность – 2,2–2,3 г/см3. Природный графит редко бывает химически чистым. В нем постоянно присутствуют примеси – кальцит, мусковит, биотит, глинистое вещество, пирит, кварц, органический углерод, вода, битумы и газы (СО2, СО, Н2, СН4, N2 и др.).
Особенность строения кристаллической решетки графита, в частности наличие в ней свободных электронов, обусловливает его специфические физические свойства: 1) совершенную спайность по одному направлению; 2) низкую твердость; 3) огнеупорность (температура плавления 3800–3900 оС); 4) высокую электро- и теплопроводность; 5) химическую инертность (растворяется лишь в расплавленных силикатах или металлах, образуя карбиды); 6) высокую жирность и пластичность; 7) высокую кроющую способность; 8) непрозрачность и др.
Применение в промышленности. Основная масса графита используется в качестве огнеупоров, производстве высокоуглеродистой стали и в литейном деле. Значительное количество его идет на производство всевозможных смазок, токопроводящей резины, сухих батарей, электродов, скользящих контактов, карандашей, туши и других изделий.
Особо чистый графит используется как замедлитель при ядерных реакциях в атомных котлах, применяется для изготовления деталей ракет в реактивной технике. Он является основным сырьем для промышленного синтеза технических алмазов, находит широкое применение в порошковой металлургии и в производстве полупроводников.
Типы руд. Графитовые руды в зависимости от величины зерна (кристаллов) подразделяют на: 1) руды чешуйчатых графитов (кристаллический чешуйчатый графит, flak graphite); 2) плотнокристаллические графиты (кристаллически кусковой графит, lump graphite); 3) скрытокристаллические или «аморфные» графиты (amorphous graphite). Руды чешуйчатых графитов по диаметру кристаллов разделяются на крупночешуйчатые (более 0,1 мм) и мелкочешуйчатые (0,001–0,1 мм). Они чаще всего встречаются в месторождениях метаморфогенного и контактово-метасоматического происхождения, реже в пегматитовых. В плотнокристаллических рудах размер кристаллов тот же, что и в мелкочешуйчатом графите, однако они не ориентированы, что затрудняет расщепление агрегата. Такие руды формировались в магматических и пневматолитовых месторождениях. Величина зерен в скрытокристаллических («аморфный» графит) рудах обычно менее 0,001 мм. Графиты этого типа формировались в метаморфизованных углях.
Общетехнические требования и способы добычи. Наиболее ценны и легко обогатимы руды чешуйчатого и плотнокристаллического графита. Они относятся к промышленным при содержании графита более 2–3 %. Эти руды легко обогащаются флотацией с получением концентрата, содержащего 60 % графита и более. Руды скрытокристаллического графита трудно обогатимы. Без обогащения используется руда с содержанием графита более 70 %.
Различные отрасли промышленности предъявляют свои специфические требования к качеству графитового сырья (руда и концентрат). Состав его варьирует в значительных пределах: графит 40–97 %, летучие компоненты 0,7–7,5 %, зола 1,75–26,5 %. Так, для графита, используемого для производства карандашей, предусмотрены марки ГК-1, ГК-2, ГК-3; зольность его не должна превышать соответственно 1, 3 и 5 %, и выход летучих компонентов – 0,5, 1 и 1,5 %. Для графита марки ГСС (графит специальных сталей) допустимы следующие максимальные содержания (%): зола 10, сера 0,3, медь 0,1, фосфор 0,1, влажность 1, выход летучих 1.
Добыча графита производится как открытым, так и подземным способами. При разработке шахтным способом за минимальную рабочую мощность графитового тела принимается 0,8–1,0 м. Возможность разработки открытым способом зависит от условий залегания графитовых тел и мощности вскрышных пород.
Ресурсы и запасы. В опубликованных источниках нет информации о мировых прогнозных ресурсах и разведанных запасах графита. Крупными запасами скрытокристаллического графита обладают Россия, Мексика, Индия, Республика Корея, КНДР и Австрия, а кристаллического графита – Малагасийская Республика, Германия, Чехия, Шри Ланка, Норвегия и др. Крупными считаются месторождения с запасами графита более 10 млн т, средними – 1–10 млн т и мелкими – менее 1 млн т.
Генетические типы промышленных месторождений. Выделяются четыре типа промышленных месторождений графита: 1) магматический; 2) контактово-метасоматический; 3) высокотемпературный гидротермальный; 4) метаморфический.
Магматические месторождения графита связаны с интрузивными и эффузивными породами разного состава – от кислых и щелочных до ультраосновных. Графит в этих породах обычно рассеян в виде чешуек, встречаются также скопления плотнокристаллического графита в виде штоков, гнезд и жил. Источником углерода для образования графита служат как газообразные составляющие части исходной магмы, так и углерод, ассимилированный магмой из вмещающих пород.
Классическим представителем месторождений этого типа является Ботогольское месторождение чешуйчатого и плотнокристаллического графита в Восточном Саяне. Оно приурочено к массиву щелочных и нефелиновых сиенитов.
Контактово-метасоматические месторождения графита приурочены к зоне контакта карбонатных и глубинных изверженных пород. В процессе их взаимодействия в зоне контакта образуются скарны. При этом происходит диссоциация молекул карбонатов
CaCO3 ___ CaO + CO2
MgCO3 ____ MgO + CO2
с образованием силикатов кальция и магния (тремолит, волластонит, гранат, скаполит и др.). Освободившийся углекислый газ в условиях высоких температур при наличии водорода может восстанавливаться до углерода: СО2 + 2Н2 С + 2 Н2О.
Для месторождений этого типа характерен крупночешуйчатый графит, рассеянный среди скарнированных пород. Иногда возникают значительные скопления в виде тел жило- и штокообразной формы. Содержание графита в рудах достигает 10–20 %. Месторождения этого типа известны в Канаде (Блэк Дональд), Узбекистане (Тас-Казган) и в других странах.
Высокотемпературные гидротермальные месторождения графита обычно связаны с гнейсами и кристаллическими сланцами. Они образовались в результате кристаллизации графита из высокотемпературных гидротермальных растворов, обогащенных летучими компонентами и циркулировавших в открытых трещинах. Рудные тела имеют форму жил и линз мощностью до 2–5 м. Характерен плотнокристаллический графит. К этому типу относятся месторождения Шри Ланки, Малагасийской Республики, Канады (провинции Онтарио и Квебек) и др.
Метаморфические месторождения представляют обычно залежи и линзы богатых руд скрытокристаллического (аморфного) графита в стратифицированных осадочных толщах различного возраста. Образуются они в основном в процессе контактового метаморфизма угольных пластов. При региональном метаморфизме за счет рассеянных в осадочных породах органических остатков формировались месторождения плотно
кристаллического или чешуйчатого графита. Наиболее характерны месторождения, образовавшиеся при контактовом метаморфизме углей: Курейское, Ногинское и другие в Красноярском крае, месторождения штата Сонора в Мексике и др.
Геология месторождений графита. В СНГ крупнейшей по запасам является Тунгусская графитоносная провинция, расположенная на западной окраине одноименного каменноугольного бассейна. Здесь широко распространены триасовые трапповые силлы и секущие дайки диабазов, вызвавшие графитизацию угольных пластов. Пласты скрытокристаллического графита развиты по правым притокам Енисея – рекам Бахте, Фатьянихе, Нижней Тунгуске и Курейке. На площади около 48 тыс км2 выявлено 15 месторождений и промышленных объектов. Наиболее крупным среди них является Курейское месторождение. Оно находится по обоим берегам р. Курейки примерно в 110 км от ее устья. Приурочено месторождение к отложениям бургуклинской свиты нижней перми, в разрезе которой известно 6 пластов каменного угля и один пласт графита средней мощностью 15 м. Графитовый пласт прослеживается по обрыву реки на протяжении 500 м. Внутреннее строение графитового пласта достаточно сложное: он состоит из слоев скрытокристаллического графита различного качества и содержит многочисленные линзы и прослои терригенных пород, а также апофизы и жилы диабазового состава. В составе руды, помимо доминирующего скрытокристаллического графита, наблюдаются его мелко- и крупночешуйчатые разновидности, минеральные примеси (кальцит, цеолиты, апатит, хлорит, серицит, магнетит, циркон, силикаты и др.). Текстура руды массивная и сланцеватая. Местами присутствуют графитизированные остатки растений. Руды месторождения содержат (%): углерода 8,45–90,6, золы 5,7–14,3, летучих 0,9–3,0, воды 0,3–0,5. Разведанные запасы графита, пригодные для разработки открытым способом, оцениваются в 10 млн т.
Месторождение Блэк Дональд расположено в Канаде (провинция Онтарио). Оно приурочено к кристаллическим известнякам протерозойской группы Гренвилл. Промышленная залежь чешуйчатого графита мощностью 3–10 м имеет пластообразную форму и залегает в виде асимметричной синклинальной складки. Южное крыло этой складки прорвано крутопадающими дайками и жилами аплитов и пегматитов, а центральная часть ее осложнена малоаплитудным взбросом. Графитовая залежь подстилается силицифицированными, а перекрывается скарнированными известняками. Основные силикатные минералы – полевые шпаты, скаполит и диопсид. В составе пород в небольших количествах присутствуют пирит, слюда, кварц.
Наиболее богатые участки месторождения, ныне полностью отработанные, содержали до 70–85 % графита, (в среднем 55–65 %). Среднее содержание графита в рядовых рудах – 25 %. В последние годы отрабатывались бедные руды с содержанием графита в среднем около 15 %. По мнению канадских геологов, месторождение Блэк Дональд относится к типу контактово-метасоматических и образовалось на контакте гренвиллских известняков с секущими жилами и дайками аплитов и пегматитов.
Лекция 14. МАГНЕЗИТ И БРУСИТ
Минералогия. Магнезит представляет собой карбонат магния MgCO3. Как член изоморфной группы минералов, в которую входят кальцит и доломит, он кристаллизуется в гексагональной сингонии и обладает спайностью по ромбоэдру. Теоретически магнезит состоит из 47,8 % MgO и 52,2 % СО2. Практически в нем всегда содержатся разные количества оксидов железа, кальция, алюминия, марганца и кремния. Иногда в ассоциации с магнезитом присутствует гидромагнезит – Mg[(OH)2 (CO3)4] . 4H2O.
Выделяются два типа природного магнезита: кристаллический и криптокристаллический (аморфный). Кристаллический магнезит образует обычно зернистые агрегаты с размерами кристаллов от долей миллиметра до 1 см. Характерны полосчатые, радиально-лучистые и массивные текстуры. Цвет его белый, серый и желтоватый, твердость 3,5–4,0, плотность 3,02 г/см3. Криптокристаллический магнезит обычно белого цвета и фарфоровидного облика. Образует, как правило, натечные гроздевидные формы, имеет раковистый излом. В отличие от кристаллического магнезита обладает более высокой твердостью (3,5–5,0) и меньшей плотностью 2,9–3,0 г/см3).
Брусит – гидрооксид магния Mg(OH)2, частично замещается Fe2+ (ферробрусит) или Mn2+ (манганбрусит). Он кристаллизуется в тригональной сингонии, габитус кристаллов таблитчатый и игольчатый. Твердость – 2,5, плотность – 2,4 г/см3. Слагает почти мономинеральные волокнистые, листоватые и зернистые агрегаты белого цвета с зеленоватым или коричневатым оттенками. Образуется за счет магнезита под воздействием низкотемпературных гидротермальных растворов:
MgCO3 + H2O = Mg(OH)2 + CO2
магнезит брусит
Применение в промышленности. Сырой магнезит используется в основном для получения «каустического магнезита» и огнеупорной магнезии («намертво обожженный магнезит»). В результате обжига при температуре 700–1000 о С магнезит теряет большую часть углекислоты и превращается в порошкообразную массу («каустический магнезит»). При повышении температуры обжига до 1450–1750 о С углекислота исчезает полностью и образуется так называемый «намертво обожженный магнезит» (металлургический магнезит, зинтермагнезит, искусственный периклаз).
«Каустический магнезит» применяется в производстве магнезиального цемента (цемент Сореля). Этот цемент служит связкой для таких органических добавок, как опилки и пробка, и обладает повышенной эластичностью, устойчивостью к абразивным воздействиям, маслам и кислотам, легко поддается распиловке и разделке. Каустическая магнезия используется в производстве огнестойких красок, служит в качестве флюсовой добавки в керамике, необходима в производстве сахара, вискозы и т. д.
«Намертво обожженный магнезит» применяется в качестве металлургического магнезитового порошка для наварки пода и стенок мартеновских печей и изготовления магнезитовых, хромито-магнезитовых и форстеритовых огнеупорных кирпичей для сталелитейного, сернокислотного и цементного производства.
Типы руд. Выделяются руды, сложенные кристаллическим магнезитом, и руды, представленные аморфным магнезитом. Бруситовые руды сложены бруситом (до 80–90 %) с примесью доломита, кальцита и серпентина. Наиболее широкое распространение имеют руды кристаллического магнезита (содержание MgCO3 до 95–98 %, основные примеси – доломит, кальцит, тальк, кварц и др.).
Общетехнические требования и способы добычи. Сырой магнезит, применяемый для производства металлургического порошка, должен содержать MgO не менее 43 %, CaO – не более 2,5 % и SiO2 – не более 2 %. Присутствие извести понижает механическую прочность огнеупоров, а наличие SiO2 снижает как огнеупорность, так и шлакоустойчивость изделий. Аморфный магнезит в связи с повышенным содержанием примесей не пригоден для получения магнезитового порошка.
В сырье для производства магнезиального цемента содержание кальцита допускается менее 4,5 %, кремнезема – до 20 %; нежелательна примесь оксидов железа, придающих бурый оттенок цементу.
Разработка месторождений магнезита осуществляется открытым способом при мощности рудного тела не менее 1 м и коэффициенте вскрыши не более 2. Странами-лидерами по добыче магнезита являются Чехия, Россия, США, Китай, КНДР и Австрия.
Генетические типы промышленных месторождений. Промышленные месторождения магнезита представлены двумя основными генетическими типами – гидротермальным метасоматическим и инфильтрационным. Гидротермальные метасоматические месторождения относятся к среднетемпературным и возникли в результате воздействия магнезиальных гидротермальных растворов на доломиты и известняки. Характерны пласты, линзы и гнезда кристаллического магнезита. Размеры залежей по простиранию достигают 1–2 км, по мощности – 400–500 м и более. Для руд этих месторождений типичны полосчатые, звездчатые и радиально-лучистые текстуры. К этому типу относятся многие месторождения на Южном Урале (Саткинское, Белорецкое и др), в Восточном Саяне (Савинское, Онотское), в Австрии, Чехии, Китае и других странах.
Инфильтрационные месторождения связаны с массивами серпентинизированных ультраосновных пород, подвергшимися латеритному выветриванию. Магнезия переходила в раствор и переносилась в зону грунтовых вод нижних горизонтов коры выветривания, где и отлагалась по трещинам в слабо разрушенных серпентинитах в виде скрытокристаллического магнезита:
H4Mg3Si2O9 + 2H2O + 3CO2 = MgCO3 + 2SiO2 + 4H2O.
серпентин магнезит
Скопления магнезита имеют форму небольших гнезд, линз и пересекающихся под разными углами жил мощностью 0,2–0,3 м (изредка до 1–2 м), формирующих иногда штокверки. Мощность штокверков обычно не превышает 40 м. Для месторождений этого типа характерен парагенезис магнезита с опалом. К этому типу относятся месторождения на восточном склоне Среднего и Южного Урала (Халиловское), в Закавказье (Севанская группа месторождений), в Казахстане (Северное Прибалхашье), Канаде, Китае.
Важнейшим геолого-промышленным типом месторождений брусита являются неправильные тела бруситов и бруситовых мраморов контактово-метаморфического генезиса среди толщ доломитов вблизи контактов с интрузивами гранитоидов (Кульдурское месторождение в Хабаровском крае, месторождения бруситовых мраморов в Канаде).
Геология месторождений магнезита и брусита. Саткинская группа месторождений кристаллического магнезита является основной базой огнеупорной промышленности России. Она включает 14 месторождений, расположенных на западном склоне Южного Урала близ г. Сатка. Крупнейшие из них – Саткинское, Березовское, Никольское и Ельничное месторождения. Приурочены они к саткинской свите известково-доломитовых пород верхнего протерозоя мощностью 300–500 м. Разрез свиты сложен мергелями, известняками, доломитами, глинистыми сланцами. Стратиформные магнезитовые залежи связаны с карагайским горизонтом верхнесаткинской подсвиты. Промышленные залежи магнезита образуют линейно вытянутую в северо-восточном направлении зону, приуроченную к северо-западному пологому крылу Саткинской синклинали.
В разрезе карагайского горизонта магнезитовые породы прослеживаются на трех стратиграфических уровнях; нижний из них, включающий пластовые неправильной формы залежи, является промышленным, а два верхних представлены небольшими линзами, гнездами, прожилками и вкрапленностью магнезита. Промышленные пластовые залежи по простиранию прослеживаются от 50 до 1700 м, по падению – от 40 до 950 м, средние мощности их – от 13 до 30 м.
Промышленные рудные тела на Карагайском участке Саткинского месторождения на 94–98 % сложены кристаллическим магнезитом. Внутри них наблюдаются прослои, линзочки и гнезда доломита. Рудные тела рассечены разломами и дайками диабазов. Магнезит в приконтактовых частях с этими дайками иногда обнаруживает маломощные зоны доломитизации и серпентинизации. В промышленных рудных телах преобладает средне- и крупнозернистый магнезит с размерами зерен 3–10 мм. Мелкозернистые разновидности встречаются в основном в виде маломощных прослоев и гнезд.
Генезис месторождений кристаллического магнезита Саткинской группы является дискуссионным. По мнению А. Н. Заварицкого, они образовались в результате метасоматического замещения доломитов под действием гидротермальных растворов. М. И. Гарань высказал представления об осадочном раннедиагенетическом образовании магнезита. Существуют и иные точки зрения. Месторождения находятся в выгодных горно-технических условиях и разрабатываются открытым способом.
Кульдурское месторождение брусита расположено в Хабаровском крае и приурочено к докембрийскому ядру Хинган-Буреинского антиклинория. Это единственное в СНГ эксплуатируемое месторождение брусита. Ядро этого антиклинория сложено осадочно-метаморфическими образованиями позднепротерозойского возраста, смятыми в опрокинутую складку. На юге площади месторождения породы прорваны палеозойским интрузивом гранитоидов.
Бруситовая минерализация приурочена к экзоконтакту гранитоидного интрузива (плагиограниты и гранодиориты) с магнезиальными карбонатными породами (мурандавская свита). Карбонатные породы превращены в доломитовые мраморы, магнезиальные скарны, кальцифиры и брусититы. Главная промышленная залежь локализована в ядре складки, имеет линзовидную форму длиной до 500 м и шириной до 220 м. Мощность ее около 120 м. Внутреннее строение этой залежи осложнено прослоями, гнездами и линзами карбонатных пород. Собственно брусититы на 80–95% сложены бруситом. Основными примесями в них являются магнезит, доломит, кальцит, серпентин, изредка присутствуют кристаллы форстерита и периклаза. Брусит представлен пластинками и табличками размером до 0,1 мм. По содержанию MgO на месторождении выделяют четыре сорта промышленных руд. Образование брусита связано с процессом контактового метаморфизма под воздействием интрузии гранитоидов.
Лекция 15. СЛЮДЫ
Минералогия. Слюды представляют собой группу диметасиликатов слоистой структуры. Все они кристаллизуются в моноклинальной сингонии, обладают совершенной спайностью по пинакоиду, что позволяет расщеплять их на тончайшие пластинки. Окраска их варьирует от бесцветной до зеленовато-коричневой и почти черной. Плотность слюд – 2,7–3,1 г/см3, твердость – 2–3. Несмотря на относительно широкое распространение слюд в природе, в том числе биотита (магнезиально-железистой слюды), циннвальдита, лепидолита (литиевых слюд), основное промышленное значение имеют мусковит (калиево-алюминиевая слюда) и флогопит (калиево-магнезиальная слюда). В промышленности используется также гидрослюда – вермикулит.
Мусковит KAl2 [AlSi3O10] (OH,F)2 – белая слюда, кристаллизующаяся в моноклинальной сингонии в виде таблитчатых и столбчатых кристаллов. Характерны чешуйчатые и листовато-зернистые агрегаты. Мусковит обычно бесцветный, зеленоватый и красный. В качестве примесей содержит Fe (1–4 %), Mg (0,2–1,1 %), Na (0,1–0,7 %), а также незначительное количество Mn, Rb, Li, Ba, Ca, W, Ti, и V. Мелкочешуйчатая разновидность мусковита – жильбертит (диаметр пластинок – первые миллиметры), тонкочешуйчатая – серицит (диаметр пластинок – десятые и сотые доли миллиметра).
Флогопит K(Mg, Fe)3 [AlSi3O10] (OH, F)2 – (флегопос) – огнеподобный (по красноватому оттенку). Минерал окрашен в коричневато-янтарный, зеленовато-коричневый и другие цвета. Основными примесями в нем являются Na, Mn, Cs, Ba, Rb, Li.
Вермикулит (Mg, Fe+2, Fe+3)3 . [(Si, Al)4O10](OH)3 . 4H2O характеризуется переменным количеством железа, алюминия и магния. Цвет бронзовый, желтовато-коричневый до темного. В нем наблюдается примесь Ca, Mn и Ti, а также следы Na, K, Ni, Cr, Ba и других элементов. Твердость вермикулита – 2,1–2,8, плотность – 2,5 г/см3.
Физические свойства. Важнейшими физическими свойствами мусковита и флогопита, обусловливающими их промышленое применение, являются: 1) весьма совершенная спайность, позволяющая получать тончайшие (до нескольких микронов) и прочные гибкие листочки; 2) относительно высокая химическая стойкость (особенно у мусковита); 3) термическая стойкость, т. е. способность сохранять при нагревании физические свойства (у мусковита достигает 500–600 о, у флогопита – 1000 оС); 4) высокая электрическая прочность, определяемая напряжением, при котором происходит пробой диэлектрика; 5) прозрачность мусковита и некоторых разностей флогопита.
Основным промышленным свойством вермикулита является его способность вспучиваться при нагревании свыше 200 оС с увеличением объема в 8–12 раз (предельно в 30 раз). Кроме того, важным свойством его является высокая способность к катионному обмену.
Применение в промышленности. Главными потребителями мусковита и флогопита являются электротехническая и радиотехническая промышленность. В этих отраслях промышленности используется около 85–90 % всей добычи качественного сырья (листовая слюда, слюдяные изделия из щипаной слюды). Литовая слюда применяется также в качестве вставок в окна плавильных печей, бытовых приборов, в очках.