Для получения обобщающих показателей динамики социально-экономических явлений определяются средние величины: средний уровень, средний абсолютный прирост, средний темп роста и прироста и др.
Средний уровень ряда динамики характеризует типичную величину абсолютных уровней.
В интервальных рядах динамики средний уровень у определяется делением суммы уровней ∑у на их число:
В моментном ряду динамики с равностоящими датами времени средний уровень определяется по формуле:
Средний абсолютный прирост представляет собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики. Для определения среднего абсолютного прироста сумма цепных абсолютных приростов делится на их число:
Средний абсолютный прирост может определяться по абсолютным уровням ряда динамики. Для этого определяется разность между конечным и базисным уровнями изучаемого периода, которая делится на субпериодов:
Основываясь на взаимосвязи между цепными и базисными абсолютными приростами, показатель среднего абсолютного прироста можно определить по формуле:
Средний темп роста- обобщающая характеристика индивидуальных темпов роста ряда динамики. Для определения среднего темпа роста Тр применяется формула:
Где Тр, Тр, …, Тр - индивидуальные (цепные) темпы роста (в коэффициентах), - число индивидуальных темпов роста.
Средний темп роста можно определить и по абсолютным уровням ряда динамики по формуле:
На основе взаимосвязи между цепными и базисными темпами роста средний темп роста можно определить по формуле:
Средний темп прироста Тп можно определить на основе взаимосвязи темпами роста и прироста. При наличии данных о средних темпах роста Тр для получения средних темпов прироста Тп используется зависимость:
(при выражении среднего темпа роста в коэффициентах)
При вычислении средних показателей динамики необходимо иметь в виду, что к этим средним показателям полностью относятся общие положения теории средних величин. Это означает прежде всего, что динамическая средняя будет типичной, если она характеризует период с однородными, более или менее стабильными условиями развития явления. Выделение таких периодов – этапов развития – в определенном отношении аналогично группировке. Если же динамическая средняя величина исчислена за период, в течение которого условия развития явления существенно менялись, т. е. период, охватывающий разные этапы развития явления, то такой средней величиной нужно пользоваться с большой осторожностью, дополняя ее средними величинами за отдельные этапы.
Средние показатели динамики должны также удовлетворять логико-математическому требованию, согласно которому при замене средней величиной тех фактических величин, из которых получена средняя, не должна изменяться величина определяющего показателя, т. е. некоторого обобщающего показателя, связанного с осредняемым показателем. Метод расчета среднего уровня ряда динамики зависит прежде всего от характера показателя, лежащего в основе ряда, т. е. от вида временного ряда.
Наиболее просто вычисляется средний уровень интервального ряда динамики абсолютных величин с равностоящими уровнями. Расчет производится по формуле простой средней арифметической:
где n – число фактических уровней за последовательные равные отрезки времени.
Сложнее обстоит дело с вычислением среднего уровня моментного ряда динамики абсолютных величин. Момент-ный показатель может изменяться почти непрерывно, поэтому чем более подробны и исчерпывающи данные о его изменении, тем более точно можно вычислить средний уровень. Более того, сам метод расчета зависит от того, насколько подробны имеющиеся данные. Здесь возможны различные случаи.
При наличии исчерпывающих данных об изменении мо-ментного показателя его средний уровень вычисляется по формуле средней арифметической взвешенной для интервального ряда с разностоящими уровнями:
где t – число периодов времени, в течение которых уровень не изменялся.
БИЛЕТ №23






