Дыхание - это совокупность процессов, благодаря которым организм потребляет кислород из окружающей среды и выделяет углекислый газ.
Этапы дыхания:
1. Внешнее дыхание /вентиляция легких/ - обмен газов между атмосферным воздухом и альвеолярным, легочная вентиляция.
2. Диффузия газов в легких - обмен газов между альвеолярным воздухом и кровью в капиллярах легких.
3. Транспорт газов кровью - этот этап осуществляется за счет деятельности сердечно-сосудистой системы, в результате чего кислород доставляется к тканям, а углекислый газ - к легким.
4. Диффузия газов в тканях - обмен газов между кровью и тканями.
5. Тканевое дыхание - окислительно-восстановительные реакции, протекающие с потреблением кислорода и выделением углекислого газа.
Первые 4 этапа изучает физиология, последний, 5-ый - биохимия.
Обеспечение тканей О2 и удаление из организма СО2 зависит от четырех процессов:
1.Вентиляция легких
2.Диффузия газов в альвеолы и ткани из крови и в кровь.
3.Перфузия легких кровью /интенсивность кровотока в легких/.
4.Перфузия тканей кровью
Отрицательное давление в плевральной щели играет важную роль в процессах вдоха и выдоха. Отрицательное давление в плевральной щели - это величина, на которую давление в плевральной щели ниже атмосферного; при спокойном дыхании оно равно 4 мм рт. ст. в конце выдоха и -8 мм рт. ст. в конце вдоха. Таким образом, реальное давление в плевральной щели составляет величину порядка 752756 мм рт. ст. и зависит от фазы дыхательного цикла. Отрицательное давление уменьшается в направлении сверху вниз примерно на 0,2 мм рт. ст. на каждый сантиметр, так как верхние отделы легких растянуты сильнее нижних, которые несколько сжаты под действием собственного веса.
Значение отрицательного давления в плевральной щели заключается в том, что оно 1) обеспечивает куполообразное положение диафрагмы, так как давление в грудной полости ниже атмосферного, а в брюшной полости оно несколько выше атмосферного за счет тонуса мышц стенки живота; 2) обеспечивает смещение диафрагмы вниз при сокращении ее мышцы во время вдоха; 3) способствует также притоку крови по венам к сердцу; 4) способствует сжатию грудной клетки при выдохе (см. п. 10.2 ниже).
Происхождение отрицательного давления. В процессе развития организма рост легких отстает от роста грудной клетки. Поскольку на легкое атмосферный воздух действует только с одной стороны - через воздухоносные пути, оно растянуто и прижато к внутренней стороне грудной клетки. Вследствие растянутого состояния легких возникает сила, стремящаяся вызвать спадение легких. Эта сила называется эластической тягой легких (ЭТЛ). О том, что легкие находятся в растянутом состоянии, свидетельствует факт их спадения при пневмотораксе (греч. рпе-ита - воздух, torax - грудь) - патологическом состоянии, возникающем при нарушении герметичности плевральной щели, в результате чего ее заполняет атмосферный воздух, оказываясь между висцеральным и париетальным листками плевры. Эластичность - способность ткани возвращаться в исходное состояние после прекращения действия растягивающей силы. Так как плевральная щель в норме не сообщается с атмосферой, давление в ней ниже атмосферного на величину ЭТЛ: при спокойном вдохе на 8мм рт. ст., при спокойном выдохе на 4ммрт. ст. Фильтрующаяся в плевральную щель жидкость всасывается обратно висцеральной и париетальной плеврами в лимфатическую систему, что является важным фактором в поддержании отрицательного давления в плевральной щели.
Составными элементами ЭТЛ являются: 1) эластиновые и кол-лагеновые волокна; 2) гладкие мышцы сосудов легких к, главное, 3) поверхностное натяжение пленки жидкости, покрывающей внутреннюю поверхность альвеол. Силы поверхностного натяжения составляют 2/3 величины ЭТЛ, причем величина поверхностного натяжения альвеолярной пленки существенно уменьшается в присутствии сурфактанта.
аким образом: Отрицательное давление в плевральной полости. Если измерить давление в плевральной полости во время дыхательной паузы, то можно обнаружить, что оно ниже атмосферного давления на 34 мм рт.ст., т.е. отрицательное. Это вызвано эластической тягой легких к корню, создающей некоторое разрежение в плевральной полости.
Во время вдоха давление в плевральной полости еще больше уменьшается за счет увеличения объема грудной клетки, а значит, отрицательное давление возрастает. Величина отрицательного давления в плевральной полости равна: к концу максимального выдоха - 1-2 мм рт. ст., к концу спокойного выдоха - 2-3 мм рт. ст., к концу спокойного вдоха -5-7 мм рт. ст., к концу максимального вдоха - 15-20 мм рт. ст.
Механизм вдоха. Вдох происходит с помощью трех одновременно протекающих процессов: 1) расширения грудной клетки; 2) увеличения объема легких; 3) поступления воздуха в легкие. У здоровых молодых мужчин разница между окружностью грудной клетки в положении вдоха и выдоха составляет 710 см, а у женщин 58 см.
Расширение грудной клетки при вдохе обеспечивается сокращением инспираторных мышц - диафрагмы, наружных межреберных и межхрящевых. Грудная клетка при вдохе расширяется в трех направлениях.
В вертикальном направлении грудная клетка расширяется в основном за счет сокращения диафрагмы и смещения ее сухожильного центра вниз, поскольку точки прикрепления периферических ее частей к внутренней поверхности грудной клетки по всему периметру находятся ниже купола диафрагмы. При спокойном вдохе купол диафрагмы опускается примерно на 2 см, при глубоком вдохе до 10 см. Диафрагмальная мышца главная дыхательная мышца, в норме вентиляция легких на 2/3 осуществляется за счет ее движений. Диафрагма принимает участие в обеспечении кашлевой реакции, рвоты, натуживания, икоты, в родовых схватках.
• Во фронтальном направлении грудная клетка расширяется благодаря некоторому разворачиванию ребер в стороны при движении их вверх.
В сагиттальном направлении грудная клетка расширяется вследствие удаления концов ребер от грудины вперед при поднятии их.
Расширению грудной клетки способствуют также и силы ее упругости, так как грудная клетка в процессе выдоха сильно сжимается с помощью ЭТЛ, вследствие чего она стремится расшириться. Поэтому энергия при вдохе расходуется только на частичное преодоле ние ЭТЛ и брюшной стенки, а грудная клетка поднимается сама и расширяется при этом примерно до 60 % жизненной емкости. Спонтанно расширяющаяся грудная клетка способствует также преодолению ЭТЛ. Вместе с расширением грудной клетки расширяются и легкие. При расширении грудной клетки движение нижних ребер оказывает большее влияние на ее объем и вместе с движением диафрагмы вниз обеспечивает лучшую вентиляцию нижних долей легких, чем верхушек легких.
Увеличение объема легких при вдохе объясняют по-разному: легкие расширяются либо вследствие увеличения отрицательного давления в плевральной щели, либо силы адгезии (слипания париетального и висцерального листков плевры), либо того и другого.
По нашему мнению, легкие расширяются под действием атмосферного давления воздуха, направленного на них только с одной стороны (через воздухоносные пути); вспомогательную роль выполняют силы сцепления (адгезии) висцерального и париетального листков плевры. Сила, с которой легкие прижаты к внутренней поверхности грудной клетки атмосферным воздухом, равна Ратм.
С целью улучшения восприятия материала изменением величины давления в самих легких (на вдохе 2 мм рт. ст., на выдохе +2 мм рт. ст.) можно пренебречь.
Снаружи на грудную клетку действует Ратм, но на легкие оно не передается, поэтому на них действует только одностороннее атмосферное давление через воздухоносные пути. Поскольку снаружи на грудную клетку действует Ратм, а изнутри Ратм-Рэтл, при вдохе необходимо преодолеть силу ЭТЛ. Поскольку при вдохе ЭТЛ увеличивается вследствие расширения (растяжения)
легких, то увеличивается и отрицательное давление в плевральной щели. А это означает, что увеличение отрицательного давления в плевральной щели является не причиной, а следствием расширения легких.
Расширению легких при вдохе способствует сила сцепления (адгезии) между висцеральным и париетальным листком плевры. Но эта сила крайне мала по сравнению с атмосферным давлением, действующим на легкие через воздухоносные пути. Об этом свидетельствует тот факт, что легкие при открытом пневмотораксе спадаются, когда воздух поступает в плевральную щель и на легкие с обеих сторон (и со стороны альвеол, и со стороны плевральной щели) действует одинаковое атмосферное давление (см. рис. 10.2). Поскольку легкие в условиях пневмоторакса отрываются от внутренней поверхности грудной клетки, это означает, что ЭТЛ превосходит силу сцепления между париетальным и висцеральным листком плевры. Поэтому сила сцепления не может обеспечить растяжение легких при вдохе, так как она меньше ЭТЛ, действующей в противоположном направлении.
Все изложенное свидетельствует о том, что легкие следуют за расширяющейся грудной клеткой при вдохе, в основном вследствие действия на них атмосферного давления только с одной стороны - через воздухоносные пути. Оно действует постоянно - и на вдохе, и на выдохе. При расширении грудной клетки и легких давление в последних уменьшается примерно на 2 мм рт. ст., но такое уменьшение нельзя считать значительным, поскольку на легкие продолжает действовать давление, равное Ратм - 2 мм рт. ст. Это давление и прижимает легкие к внутренней поверхности грудной клетки - именно поэтому легкие следуют за расширяющейся грудной клеткой при вдохе.
Воздух поступает в легкие при их расширении вследствие некоторого (на 2 мм рт. ст.) падения давления в них. Этого незначительного градиента давления достаточно, поскольку воздухоносные пути имеют большой просвет и не оказывают существенного сопротивления движению воздуха. Кроме того, увеличение ЭТЛ при вдохе обеспечивает дополнительное расширение бронхов. Вслед за вдохом плавно начинается выдох, который при спокойном дыхании осуществляется без непосредственной затраты энергии.
Механизм выдоха. Выдох осуществляется вследствие одновременно происходящих трех процессов: 1) сужения грудной клетки; 2) уменьшения объема легких; 3) изгнания воздуха из легких. Экспираторными мышцами являются внутренние межреберные мышцы и мышцы брюшной стенки.
Сужение грудной клетки при выдохе обеспечивается ЭТЛ и эластической тягой брюшной стенки. Это достигается следующим образом. При вдохе растягиваются легкие, вследствие чего возрастает ЭТЛ. Кроме того, диафрагма опускается вниз и оттесняет органы брюшной полости, растягивая при этом саму брюшную стенку, вследствие чего увеличивается ее эластическая тяга. Как только прекращается поступление импульсов к мышцам вдоха по диафраг-мальным и межреберным нервам, прекращается возбуждение мышц вдоха, вследствие чего они расслабляются. После этого грудная клетка суживается под влиянием ЭТЛ и постоянно имеющегося тонуса мышц брюшной стенки при этом органы брюшной полости оказывают давление на диафрагму и поднимают ее.
Поднятию купола диафрагмы способствует также ЭТЛ. Сужению грудной клетки (опусканию ребер) способствует также ее масса, но главную роль играет ЭТЛ.
Механизм передачи ЭТЛ на грудную клетку и сужения ее. Это осуществляется за счет уменьшения давления атмосферного воздуха на грудную клетку изнутри через воздухоносные пути и легкие (см. рис. 10.2). Уменьшение давления равно силе ЭТЛ, так как с внутренней стороны реальное давление, оказываемое воздухом на грудную клетку, равно Pатм-Рэтл, а снаружи на грудную клетку действует Ратм Этот перепад давлений действует и на вдохе, и на выдохе, но вдоху он препятствует (преодоление ЭТЛ), а выдоху, наоборот, способствует. ЭТЛ сжимает грудную клетку, как пружину.
Сила сцепления (адгезии) висцерального и париетального листков плевры мала и не добавляется к ЭТЛ, и не вычитается из нее, а только способствует удержанию листков плевры друг с другом.
Легкие сжимаются при выдохе под действием их собственной эластической тяги, которая обеспечивает сужение и грудной клетки.
Воздух изгоняется из легких вследствие повышения давления в них (при спокойном выдохе - на 2 мм рт. ст.), так как объем легких при выдохе уменьшается, что ведет к сжатию воздуха и выдавливанию его из легких.
Дополнительно: При вдохе преодолевается ряд сил:
1) эластическое сопротивление грудной клетки,
2) эластическое сопротивление внутренних органов, оказывающих давление на диафрагму,
3) эластическое сопротивление легких,
4) вязко-динамическое сопротивление всех перечисленных выше тканей,
5) аэродинамическое сопротивление дыхательных путей,
6) силу тяжести грудной клетки,
7) силы инерции перемещаемых масс/органов/
Биомеханика спокойного вдоха и выдоха…
Биомеханика спокойного вдоха
В развитии спокойного вдоха играют роль: сокращение диафрагмы и сокращение наружных косых межреберных и межхрящевых мышц.
Под влиянием нервного сигнала диафрагма /наиболее сильная мышца вдоха/ сокращается, ее мышцы расположены радиально по отношению к сухожильному центру, поэтому купол диафрагмы уплощается на 1,5-2,0 см, при глубоком дыхании -на 10 см, растет давление в брюшной полости. Размер грудной клетки увеличивается в вертикальном размере.
Под влиянием нервного сигнала сокращаются наружные косые межреберные и межхрящевые мышцы. У мышечного волокна место прикрепления его к нижележащему ребру дальше от позвоночника, чем место его прикрепления к вышележащему ребру, поэтому момент силы нижележащего ребра при сокращении этой мышцы всегда больше, чем таковой у вышележащего ребра. Это приводит к тому, что ребра как бы приподнимаются, а грудные хрящевые концы как бы слегка скручиваются. Так как при выдохе грудные концы ребер располагаются ниже, чем позвоночные /дуга под углом/, то сокращение наружных межреберных мышц приводит их в более горизонтальное положение, окружность грудной клетки увеличивается, грудина приподнимается и выходит вперед, межреберное расстояние увеличивается. Грудная клетка не только приподнимается, но и увеличивает свои саггитальный и фронтальный размеры. За счет сокращения диафрагмы, наружных косых межреберных и межхрящевых мышц увеличивается объем грудной клетки. Движение диафрагмы обуславливает примерно 70-80% вентиляции легких.
Грудная клетка выстлана изнутри париетальным листком плевры, с которым крепко сращена. Легкое покрыто висцеральным листком плевры, с которым также крепко сращено. В нормальных условиях листки плевры плотно прилегают друг к другу и могут скользить /благодаря выделению слизи/ относительно друг друга. Силы сцепления между ними велики и листки плевры невозможно разъединить.
При вдохе париетальный листок плевры следует за расширяющейся грудной клеткой, тянет за собой висцеральный листок и тот растягивает ткань легкого, что приводит к увеличению их объема. В этих условиях воздух, находящийся в легких /альвеолах/ распределяется в новом, большем объеме, это приводит к падению давления в легких. Возникает разница давлений между окружающей средой и легкими /трансреспираторное давление/.
Трансреспираторное давление(Ртрр) - это разница между давлением в альвеолах (Ральв) и внешним /атмосферным/ давлением (Рвнеш). Ртрр= Ральв. - Рвнешн,. Равняется на вдохе - 4 мм рт. ст. Эта разница и заставляет войти порцию воздуха через воздухоносные пути в легкие. Это и есть вдох.
Биомеханика спокойного выдоха
Спокойных выдох осуществляется пассивно, т.е. не происходит сокращения мышц, а грудная клетка спадается за счет сил, которые возникли при вдохе.
Причины, вызывающие выдох:
1. Тяжесть грудной клетки. Поднятые ребра опускаются под действием тяжести.
2. Органы брюшной полости, оттесненные диафрагмой вниз при вдохе, поднимают диафрагму.
В дыхательных движениях участвуют:
1. Дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воздуха.
К воздухоносным путям, управляющим потоком воздуха, относятся: нос, полость носа, носоглотка, гортань, трахея, бронхи и бронхиолы.
Нос и полость носа служат проводящими каналами для воздуха, где он нагревается, увлажняется и фильтруется.
Полость носа выстлана богато васкулиризированной слизистой оболочкой. В верхней части полости носа лежат обонятельные рецепторы. Носовые ходы открываются в носоглотку.
Гортань лежит между трахеей и корнем языка.
У нижнего конца гортани начинается трахея и спускается в грудную полость, где делится на правый и левый бронхи.
Дыхательные пути от трахеи до концевых дыхательных единиц (альвеол) ветвятся (раздваиваются) 23 раза.
Первые 16 «поколений» дыхательных путей – бронхи и бронхиолы выполняют проводящую функцию.
«Поколения» 17...22, респираторные бронхиолы и альвеолярные ходы, составляют переходную (транзиторную) зону.
И только 23-е «поколение» является дыхательной респираторной зоной и целиком состоит из альвеолярных мешочков с альвеолами.
Общая площадь поперечного сечения дыхательных путей по мере ветвления возрастает более чем в 4,5 тысячи раз. Правый бронх обычно короче и шире левого.
2. Эластическая и растяжимая легочная ткань.
Легкие состоят из бронхиол и альвеолярных мешочков, а также из артерий, капилляров и вен легочного круга кровообращения.
Респираторный отдел представлен альвеолами.
В легких имеется три типа альвеолоцитов (пневмоцитов), выполняющих разную функцию.
Альвеолоциты второго типа осуществляют синтез липидов и фосфолипидов легочного сурфактанта.
Общая площадь альвеол у взрослого человека достигает 80...90 м2, т.е. примерно в 50 раз превышает поверхность тела человека.
3. Грудная клетка, состоящая из пассивной костно-хрящевой основы, которая соединена соединительными связками и дыхательными мышцами, которые осуществляют поднятие и опускание ребер и движения купола диафрагмы.
За счет большого количества эластической ткани легкие, обладая значительной растяжимостью и эластичностью, пассивно следуют за всеми изменениями конфигурации и объема грудной клетки.
Существуют два механизма, вызывающие изменение объема грудной клетки: поднятие и опускание ребер и движения купола диафрагмы.
Дыхательные мышцы подразделяются на инспираторные и экспираторные.
Инспираторными мышцами являются диафрагма, наружные межреберные и межхрящевые мышцы.
При спокойном дыхании объем грудной клетки изменяется в основном за счет сокращения диафрагмы и перемещения ее купола.
Опусканию диафрагмы всего на 1 см соответствует увеличение емкости грудной полости примерно на 200...300 мл.
При глубоком форсированном дыхании участвуют дополнительные мышцы вдоха: трапециевидные, пепередние лестничные и грудино-ключично-сосцевидные мышцы.
Они включаются в активный процесс дыхания при значительно больших величинах легочной вентиляции, например, при восхождении альпинистов на большие высоты или при дыхательной недостаточности, когда в процесс дыхания вступают почти все мышцы туловища.
Экспираторными мышцами являются внутренние межреберные и мышцы брюшной стенки, или мышцы живота.
Каждое ребро способно вращаться вокруг оси, проходящей через две точки подвижного соединения с телом и поперечным отростком соответствующего позвонка.
Верхние отделы грудной клетки на вдохе расширяются преимущественно в переднезаднем направлении, а нижние отделы больше расширяются в боковых направлениях, так как ось вращения нижних ребер занимает сагиттальное положение.
В фазу вдоха наружные межреберные мышцы, сокращаясь, поднимают ребра, а в фазу выдоха ребра опускаются благодаря активности внутренних межреберных мышц.
При обычном спокойном дыхании выдох осуществляется пассивно, поскольку грудная клетка и легкие спадаются - стремятся занять после вдоха то положение, из которого они были выведены сокращением дыхательных мышц.
Однако при кашле, рвоте, натуживании мышцы выдоха активны.
При спокойном вдохе увеличение объема грудной клетки составляет примерно 500...600 мл.
Движение диафрагмы во время дыхания обусловливает до 80% вентиляции легких.






