Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Характеристики полевых транзисторов




 

Иной новичок буквально «впадает в столбняк», впрямую сталкиваясь с обескураживающим разнообразием типов ПТ (см., например, первое издание этой книги!), разнообразием, возникающим как следствие возможных комбинаций полярности (n ‑ и p‑ канальные), вида изоляции затвора (ПТ с полупроводниковым переходом или МОП‑транзисторы с изолятором в виде окисла), а также типа легирования канала (ПТ обогащенного или обедненного типа). Из восьми имеющихся в результате этих комбинаций возможностей шесть могли бы быть реализованы, а пять‑реализованы на практике. Основной интерес представляют четыре случая из этих пяти.

Чтобы понять, как работает ПТ (и исходя из здравого смысла), будет правильно, если мы начнем только с одного типа, точно так, как мы сделали с биполярным npn ‑транзистором. Хорошо разобравшись с ПТ выбранного типа, мы в дальнейшем будем иметь минимум трудностей в изучении остальных членов этого семейства.

Входные характеристики ПТ. Рассмотрим вначале n ‑канальный МОП‑транзистор обогащенного типа, биполярным аналогом которого является n‑p‑n ‑транзистор (рис. 3.1).

 

 

Рис. 3.1. α    – n ‑канальный МОП‑транзистор; б – биполярный n‑р‑n ‑транзистор.

 

В нормальном режиме сток (или соответствующий ему коллектор) имеет положительный потенциал относительно истока (эмиттера). Ток от стока к истоку отсутствует, пока на затвор (базу) не будет подано положительное по отношению к истоку напряжение. В последнем случае затвор становится «прямосмещенным», и возникает ток стока, который весь проходит к истоку. На рис. 3.2 показано, как изменяется ток стока IС в зависимости от напряжения сток‑исток UСИ, при нескольких значениях управляющего напряжения затвор‑исток UЗИ.

 

 

Рис. 3.2. Измеренные семейства выходных характеристик n ‑канального МОП‑транзистора VN0106 (а) и биполярного n‑p‑n ‑транзистора 2N3904 (б).

 

Для сравнения здесь же приведено соответствующее семейство кривых зависимости IК от U для обычного биполярного n‑p‑n ‑транзистора. Очевидно, что n ‑канальные МОП‑транзисторы и биполярные n‑p‑n ‑транзисторы во многом схожи.

Подобно n‑p‑n ‑транзистору, ПТ имеет большое приращение полного сопротивления стока, в результате чего при напряжении UСИ свыше 1–2 В ток стока почти не меняется. Для этой области характеристик ПТ неудачно выбрано название «область насыщения», тогда как у биполярных транзисторов соответствующая область называется «активной». Подобно биполярному транзистору, чем больше смещение затвора ПТ относительно истока, тем больше ток стока. В любом случае поведение ПТ ближе к идеальным устройствам – преобразователям проводимости (постоянный ток стока при неизменном напряжении затвор‑исток), чем биполярных транзисторов; согласно уравнению Эберса‑Молла у биполярных транзисторов должны быть превосходные характеристики выходной проводимости, однако эти идеальные характеристики не достигаются из‑за эффекта Эрли (см. разд. 2.10).

До сих пор ПТ выглядел подобно n‑p‑n ‑транзистору. Посмотрим, однако, на ПТ поближе. С одной стороны, свыше нормального диапазона ток насыщения стока растет довольно умеренно при увеличении напряжения затвора (UЗИ). Фактически он пропорционален (UЗИUП)2, где UП ‑ «пороговое напряжение затвора», при котором начинает идти ток стока (для ПТ на рис. 3.2 UП ~= 1,63 В); сравните этот слабый квадратичный закон с крутой экспоненциальной зависимостью, данной нам Эберсом и Моллом. Во‑вторых, постоянный ток затвора равен нулю, так что мы не должны смотреть на ПТ как на устройство, усиливающее ток (коэффициент усиления тока был бы равен бесконечности). Вместо этого будем рассматривать ПТ как характеризуемое крутизной устройство – преобразователь проводимости с программированием тока стока напряжением затвор‑исток, – так, как это мы делали с биполярным транзистором в толковании Эберса‑Молла. Напомним, что крутизна gm есть просто отношение iС / uСИ (как и обычно, строчные буквы используются, чтобы показать «малосигнальные» изменения параметра; т. е. iС / uСИ = δ/ IС / UСИ). В‑третьих, у МОП‑транзистора затвор действительно изолирован от канала сток‑исток; поэтому, в отличие от биполярных транзисторов (и от ПТ p‑n ‑переходом, как мы далее увидим), можно подавать на него положительное (или отрицательное) напряжение до 10 В и более, не заботясь о диодной проводимости. И наконец, ПТ отличается от биполярного транзистора в так называемой линейной области графика, где его поведение довольно точно соответствует поведению резистора, даже при отрицательном UСИ; это оказывается очень полезным свойством, поскольку, как вы уже могли догадаться, эквивалентное сопротивление сток‑исток программируется напряжением затвор‑исток.

Два примера. В ПТ еще найдется, чем нас удивить. Однако прежде чем углубляться в детали, посмотрим на две простые переключающие схемы. На рис. 3.3 показан МОП‑транзисторный эквивалент рис. 2.3, первого из рассмотренного нами насыщенного транзисторного переключателя.

 

 

Рис. 3.3. Ключ на МОП‑транзисторе.

 

Схема на ПТ даже проще, поскольку здесь мы совершенно не должны заботиться о неизбежно возникшем ранее компромиссе между необходимостью задать соответствующий необходимый для переключения ток базы (рассматривая наихудший случай – минимальное значение h21Э  в сочетании с сопротивлением холодной нити лампы) и исключить избыточное расходование энергии. Вместо этого мы всего лишь подаем на затвор, имеющий высокое полное входное напряжение, полное напряжение питания постоянного тока.

Поскольку включенный ПТ ведет себя как резистор с малым по сравнению с нагрузкой сопротивлением, потенциал стока станет при этом близок к потенциалу земли; типичный мощный МОП‑транзистор имеет Rвкл < 0,2 Ом, что превосходно для данной задачи.

На рис. 3.4 показана схема «аналогового переключателя», которую вообще невозможно выполнить на биполярных транзисторах.

 

 

Рис. 3.4.

 

Идея этой схемы состоит в том, чтобы переключать проводимость ПТ из разомкнутого (затвор смещен в «обратном» направлении) в замкнутое состояние («прямое» смещение затвора), тем самым блокируя или пропуская аналоговый сигнал (позже мы увидим множество причин выполнять такого рода вещи). В данном случае мы должны лишь обеспечить, чтобы на затвор подавалось более отрицательное переключающее напряжение, чем любой размах входного переключаемого сигнала (ключ разомкнут) или на несколько вольт более положительное, чем любой входной сигнал (ключ замкнут). Биполярные' транзисторы для такой схемы непригодны, поскольку база проводит ток и образует с коллектором и эмиттером диоды, что приводит к опасному эффекту «защелкивания». В сравнении с этим МОП‑транзистор восхитительно прост, нуждаясь лишь в подаче на затвор (являющийся практически разомкнутой цепью) напряжения, равного размаху входного аналогового сигнала.

Будьте, однако, внимательны: наше рассмотрение этой схемы было до некоторой степени упрощением – например, мы игнорировали влияние емкости затвор‑канал, а также вариации Rвкл при изменении сигнала. Позже мы еще поговорим об аналоговых ключах.

 

 

Типы ПТ

 

N ‑канальные, p ‑канальные ПТ. Теперь о генеалогическом древе. Во‑первых, полевые транзисторы (как и биполярные) могут выпускаться обеих полярностей. Таким образом, зеркальным отображением нашего n ‑канального МОП‑транзистора является p ‑канальный МОП‑транзистор. Его характеристики симметричны и напоминают характеристики р‑n‑р ‑транзистора: сток нормально имеет отрицательное смещение по отношению к истоку, и ток стока будет проходить, если на затвор подать отрицательное по отношению к истоку напряжение не менее одного‑двух вольт. Симметрия несовершенна, поскольку носителями являются не электроны, а дырки с меньшей «подвижностью» и «временем жизни неосновных носителей». Эти параметры полупроводника важны для свойств транзисторов, а выводы стоит запомнить: p ‑канальные ПТ имеют обычно более плохие характеристики, а именно более высокое пороговое напряжение, более высокое Rвкл и меньший ток насыщения.

МОП‑транзисторы, ПТ с р‑n ‑переходом. У МОП‑транзисторов (металл‑окисел‑полупроводник) затвор изолирован от проводящего канала тонким слоем SiO2 (стекла), наращенного на канал (рис. 3.5).

 

 

Рис. 3.5. N ‑канальный МОП‑транзистор.

 

Затвор, который может быть металлическим или легированным полупроводником, действительно изолирован от цепи исток‑сток (характеристическое сопротивление > 1014 Ом) и действует на проводимость канала только своим электрическим полем. Иногда МОП‑транзисторы называют полевыми транзисторами с изолированным затвором. Изолирующий слой довольно тонкий, обычно его толщина не превышает длины волны видимого света и он может выдержать напряжение затвора до ±20 В и более.

МОП‑транзисторы просты в применении, поскольку на затвор можно подавать напряжение любой полярности относительно истока, и при этом через затвор не будет проходить никакой ток. Эти транзисторы, однако, в большой степени подвержены повреждениям от статического электричества, вы можете вывести из строя устройство на МОП‑транзисторах буквально одним прикосновением.

Символическое изображение МОП‑транзистора показано на рис. 3.6.

 

 

Рис. 3.6. a) n ‑канальный и б)p ‑канальный МОП‑транзисторы.

 

Здесь представлен дополнительный вывод, «тело» или «подложка»‑кусок кремния, на котором выполнен ПТ (см. рис. 3.5). Так как подложка образует с каналом диодное соединение, напряжение на ней должно быть ниже напряжения проводимости. Она может быть соединена с истоком или с точкой схемы, в которой напряжение ниже (выше), чем у истока n ‑канального (р ‑канального) МОП‑транзистора.

Обычно на схемах вывод подложки не показывается; более того, часто инженеры используют символ с симметричным затвором. К сожалению, при этом не остается ничего, что позволило бы вам отличить сток от истока, но что еще хуже, нельзя отличить n ‑канальный транзистор от p ‑канального! В этой книге мы будем использовать только нижние схемные изображения, дабы исключить недоразумения, хотя часто мы будем оставлять вывод подложки неподключенным.

В ПТ с p‑n ‑переходом затвор образует с расположенным под ним каналом полупроводниковый переход. Это влечет за собой важное следствие, состоящее в том, что в ПТ с p‑n‑переходом во избежание прохождения тока через затвор последний не должен быть смещен в прямом направлении относительно канала. Например, у n ‑канального ПТ с p‑n ‑переходом диодная проводимость будет наблюдаться по мере того как напряжение на затворе приближается к 4–0,6 В по отношению к концу канала с более отрицательным потенциалом (обычно это исток). Поэтому затвор работает, будучи смещен в обратном направлении по отношению к каналу, и в цепи затвора нет никакого тока, кроме тока утечки. Схемные изображения ПТ с p‑n ‑переходом представлены на рис. 3.7.

 

 

Рис. 3.7. a) n ‑канальный и б)p ‑канальный ПТ с p‑n ‑переходом.

 

И вновь мы предпочитаем символические обозначения со смещенным затвором, что позволяет идентифицировать исток. Как мы увидим далее, ПТ (как с p‑n ‑переходом, так и МОП‑транзисторы) почти симметричны, но обычно они изготавливаются таким образом, чтобы получить емкость между стоком и затвором меньше, чем емкость между истоком и затвором, вследствие чего использовать сток в качестве выходного вывода предпочтительнее.

Обогащение, обеднение. N ‑канальный МОП‑транзистор, с которого мы начали эту главу, не проводил ток при нулевом (или отрицательном) смещении затвора и начинал проводить, когда затвор становился положительно смещен относительно истока. Этот тип ПТ известен как ПТ обогащенного типа. Имеется и другая возможность изготовления n ‑канального ПТ, когда полупроводник канала «легирован» так, что даже при нулевом смещении затвора имеется значительная проводимость канала, и на затвор должно быть подано обратное смещение в несколько вольт для отсечки тока стока. Такой ПТ известен как прибор обедненного типа.

МОП‑транзисторы могут быть изготовлены любой разновидности, поскольку здесь нет ограничения на полярность затвора. Однако ПТ с p‑n ‑переходом допускают лишь одну полярность смещения затвора, а посему их выпускают только обедненного типа.

График зависимости тока стока от напряжения затвор‑исток при фиксированном значении напряжения стока (рис. 3.8) может помочь нам уяснить, в чем состоит это различие.

 

 

Рис. 3.8. Обогащенные (1) и обедненные (2) ПТ отличаются только сдвигом напряжения затвор‑исток (лог. масштаб).

 

МОП‑транзистор обогащенного типа не проводит ток, пока напряжение затвора не станет положительным (имеются в виду n ‑канальные ПТ) по отношению к истоку, в то время как ток стока МОП‑транзистора обедненного типа будет близок к максимальному при напряжении затвора, равном напряжению истока. В некотором смысле такое разбиение на две категории является искусственным, поскольку два графика на рис. 3.8 отличаются только на сдвиг по оси UЗИ. Вполне возможно было бы производство «промежуточных» МОП‑транзисторов. Тем не менее эта разница становится существенной, когда дело доходит до проектирования схем.

Заметим, что ПТ с р‑n ‑переходом – это всегда приборы обедненного типа и смещение затвора относительно истока не должно быть больше приблизительно +0,5 В (для n ‑канала), иначе появится проводимость в диодном переходе затвор‑канал. МОП‑транзисторы могут быть обогащенными или обедненными, но на практике редко можно встретить последние (исключением являются n ‑канальные ПТ на GaAs и каскодные пары со «сдвоенным затвором» для радиочастотных применений). Отсюда следует, что во всех практически встречающихся случаях мы имеем дело только с ПТ с p‑n ‑переходом обедненного типа либо с обогащенными МОП‑транзисторами; и те и другие могут быть любой полярности, т. е. n ‑канальными либо p ‑канальными.

 

 

Общая классификация ПТ

 

Генеалогическое древо (рис. 3.9) и карта входных/выходных напряжений при заземленном истоке (рис. 3.10) помогают разобраться в ситуации.

 

 

Рис. 3.9.

 

 

Рис. 3.10.

 

Различные приборы (включая весь «букет» биполярных nрn ‑ и pnp ‑транзисторов) нарисованы в квадрантах, характеризующих их входное и выходное напряжение в активной области при заземленном истоке (или эмиттере). При этом вовсе не обязательно запоминать свойства каждого из пяти представленных здесь типов ПТ, поскольку они в основном одинаковы.

Во‑первых, при заземленном истоке ПТ включается (переходит в проводящее состояние) путем смещения напряжения затвора в сторону напряжения питания стока. Это верно как для всех пяти типов ПТ, так и для биполярных транзисторов. Например, для n ‑канального ПТ с р‑n ‑переходом (который автоматически является обедненным) используется положительное напряжение питания стока, как и для всех n ‑канальных приборов. Таким образом, этот ПТ включается положительным смещением затвора. Здесь есть тонкость, состоящая в том, что у приборов обедненного типа для получения нулевого тока стока затвор должен иметь обратное смещение, в то время как у приборов обогащенного типа достаточно для этой цели нулевого напряжения на затворе.

Во‑вторых, в связи с примерной симметрией истока и стока любой из этих выводов может работать как исток (исключение составляют мощные МОП‑транзисторы, у которых подложка внутри корпуса соединена с истоком). При изучении работы ПТ, а также при расчетах за исток принимается вывод, наиболее «удаленный» по напряжению от активного питания стока. Например, допустим, что ПТ используется для замыкания на землю некоторой линии, в которой присутствуют как положительные, так и отрицательные сигналы. Обычно такая линия подключается к стоку ПТ. Если в качестве ключа взят n ‑канальный МОП‑транзистор обогащенного типа и если случится, что в выключенном состоянии напряжение на стоковом выводе будет отрицательным, то для подсчета отпирающего напряжения затвора этот вывод следует считать в действительности «истоком». Это означает, что для обеспечения надежного запирания ключа отрицательное напряжение на затворе должно быть не только уровня «земли», но и превышать (по абсолютной величине) наибольший отрицательный сигнал.

Характеристики, приведенные на рис. 3.11, помогут вам разобраться в этих запутанных вопросах.

 

 

Рис. 3 11. Характеристики ПТ различных типов и полярностей (лог. масштаб).

1 – обогащенный p ‑канальный МОП‑транзистор; 2 – обогащенный n ‑канальный МОП‑транзистор; 3n ‑канальный ПТ с p‑n ‑переходом; 4p ‑канальный ПТ с p‑n ‑переходом.

 

Еще раз отметим, что разница между обогащенными и обедненными приборами выражается только в сдвиге вдоль оси UЗИ, т. е. имеется ли большой ток стока или нет совсем никакого тока при напряжении затвора равном напряжению истока. Полевые n ‑канальные и p ‑канальные транзисторы симметричны друг другу в том же смысле, в каком являются таковыми биполярные n‑р‑n ‑ и p‑n‑p ‑транзисторы.

На рис. 3.11 мы использовали стандартные обозначения для таких важных параметров ПТ, как ток насыщения и напряжение отсечки. Для ПТ с p‑n ‑переходом величина тока стока при замкнутых накоротко затворе и истоке обозначается в спецификациях как IСИ нач; она близка к величине максимально допустимого тока стока. (IСИ нач означает ток от стока к истоку при короткозамкнутых затворе и истоке. Здесь и далее в этой главе мы приводим эту нотацию, в которой первые две буквы индекса обозначают соответствующие выводы, а за ними указывается состояние.) Для обогащенных МОП‑транзисторов аналогичной спецификацией является IСИ вкл, при некотором заданном напряжении прямого смещения затвора (IСИ нач у любого прибора с обогащением был бы равен нулю).

Для ПТ с p‑n ‑переходом напряжение затвор‑исток, при котором ток стока становится равен нулю, называется «напряжением отсечки» (Uотс) или «напряжением выключения» (UЗИ выкл) и типичное его значение лежит в диапазоне от –3 до –10 В (для p ‑канального прибора оно, разумеется, положительное). Для обогащенного МОП‑транзистора аналогичная величина называется «пороговое напряжение», UП (или UЗИ пор), – это напряжение перехода затвор‑исток, при котором начинает проходить ток стока. Типичная величина UП составляет 0,5–5 В, разумеется в «прямом» направлении. Читая литературу по электронике на английском языке, не спутайте случайно UП (обозначаемое там как VT) с VT в уравнении Эберса – Молла, которое обозначает ток коллектора биполярного транзистора; у этих двух величин нет ничего общего.

Имея дело с ПТ, легко запутаться в полярностях. Например, n ‑канальное устройство, у которого обычно сток положителен по отношению к истоку, может иметь положительное или отрицательное напряжение на затворе, а также положительное (обогащенный тип) или отрицательное (обедненный тип) пороговое напряжение. Еще более усложняет дело то, что сток может быть (и часто бывает) отрицателен по отношению к истоку. Все эти рассуждения, конечно, справедливы с заменой знаков для p ‑канальных устройств. В дальнейшем, чтобы свести к минимуму ошибки, мы будем всегда иметь в виду n ‑канальные устройства, если не оговорено противное. Аналогичным образом, поскольку МОП‑транзисторы почти всегда обогащенные, а ПТ с p‑n ‑переходом всегда обедненного типа, мы будем далее опускать эти их определения.

 

 





Поделиться с друзьями:


Дата добавления: 2018-11-11; Мы поможем в написании ваших работ!; просмотров: 521 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.