На рис. 2.77 представлена схема, которая решает задачу, рассмотренную в разд. 1.32: включение звуковой сигнализации (звонка) при условии, что одна дверца машины открыта и водитель находится за рулем.
Рис. 2.77. В этой схеме «сторожа» и диоды, и транзисторы образуют схему цифрового логического «затвора».
В приведенной схеме все транзисторы работают как переключатели (находятся в режиме отсечки или насыщения). Диоды Д1 и Д2 образуют так называемую схему ИЛИ, которая выключает транзистор Т1, если одна из дверц открыта (переключатель замкнут). Однако потенциал коллектора Т1 сохраняет значение, близкое к потенциалу земли, и предотвращает включение звукового сигнала, если не замкнут переключатель П3 (водитель находится за рулем); при выполнении последнего условия резистор R 2 обеспечивает включение транзистора Т3 и на звонок подается напряжение 12 В.
Диод Д3 обеспечивает падение напряжения, благодаря которому транзистор Т1 будет выключен, если замкнуты переключатели П1 и П2, а диод Д4 предохраняет транзистор Т3 от индуктивных переходных процессов, возникающих при отключении звонка. Подробно мы рассмотрим логические схемы в гл. 8.
В табл. 2.1 приведены параметры группы малосигнальных транзисторов, широко используемых на практике, соответствующие им графики зависимости коэффициентов усиления по току от коллекторного тока представлены на рис. 2.78. См. также приложение К.
Рис. 2.78. Графики зависимости коэффициента усиления по току h 21Э от коллекторного тока IК для группы транзисторов, параметры которых приведены в табл. 2.1 (по данным фирм‑изготовителей). Возможен технологический разброс от изображенных типовых значений в пределах +100 %, –50 %.
Схемы, не требующие пояснений
Удачные схемы
На рис. 2.80 показаны два проекта схем с использованием транзисторов.
Рис. 2.80. a – дифференциальный усилитель со смещением, обеспечивающим нулевой температурный коэффициент усиления; б – световой интегратор.
K
RК / rЭ; rЭ = kT / qTК; т. е. K
IК / T, IЭ
T
Негодные схемы
Как известно, учатся на ошибках, и своих, и чужих. В этом разделе вашему вниманию предложена целая серия грубых ошибок, допущенных при разработке схем (рис. 2.81). Внимательно рассмотрите представленные схемы, подумайте, какие возможны варианты и никогда не делайте подобных ошибок!
Рис. 2.81. a – повторители со связью по переменному току;
Рис. 2.81. б – стабилизатор напряжения +5 В; в – двухтактный повторитель; г – источник тока;
Рис. 2.81. д – переключатель для больших токов; е – двухкаскадный усилитель; ж – дифференциальный усилитель;
Рис. 2.81. з – повторитель с нулевым смещением; и – усилитель переменного тока с большим коэффициентом усиления.
Дополнительные упражнения
(1) Разработайте схему транзисторного переключателя, которая позволила бы подключать к земле две нагрузки через насыщенные транзисторы n‑р‑n ‑типа. При замыкании переключателя А обе нагрузки должны находиться под напряжением, при замыкании переключателя Б мощность должна передаваться только в одну нагрузку. Подсказка: используйте в схеме диоды.
(2) Рассмотрите источник тока, изображенный на рис. 2.79.
Рис. 2.79.
(а ) Определите ток Iнагр. Чему равен рабочий диапазон схемы? Считайте, что напряжение UБЭ составляет 0,6 В.
(б ) Как будет изменяться выходной ток, если при изменении коллекторного напряжения в пределах выходного диапазона коэффициент h21э изменяется от 50 до 100? (При решении этой задачи следует учесть два эффекта.)
(в ) Как будет изменяться ток нагрузки в пределах рабочего диапазона, если известно, что изменение напряжения UБЭ описывается зависимостью Δ UБЭ = – 0,001Δ Uкэ (эффект Эрли)?
(г ) Чему равен температурный коэффициент выходного тока, если предположить, что коэффициент h21Э не зависит от температуры? Чему равен температурный коэффициент выходного тока, если предположить, что коэффициент h21Э увеличивается относительно номинального значения 100 на 0,4 %/°С?
(3) Разработайте схему усилителя с общим эмиттером на основе транзистора n‑р‑n ‑типа по следующим исходным данным: коэффициент усиления по напряжению равен 15, напряжение питания Uкк равно 15 В, коллекторный ток Iк равен 0,5 мА. Транзистор должен быть смещен так, чтобы потенциал коллектора был равен 0,5 Uкк, а точке –3 дБ должна соответствовать частота 100 Гц.
(4) Предусмотрите в предыдущей схеме следящую связь для увеличения входного импеданса. Правильно определите точку спада усиления при следящей связи.
(5) Разработайте схему дифференциального усилителя со связями по постоянному току по следующим исходным данным: коэффициент усиления по напряжению равен 50 (для однополюсного выхода) при входных сигналах с напряжением, близким к потенциалу земли; источники питания обеспечивают напряжение +15 В; ток покоя в каждом транзисторе равен 0,1 мА. В эмиттерной цепи используйте источник тока, а в качестве выходного каскада – эмиттерный повторитель.
(6) Выполнив это упражнение, вы получите усилитель, коэффициент усиления которого управляется внешним напряжением (в гл. 3 эта задача решается с помощью полевых транзисторов),
(а ) Сначала разработайте схему дифференциального усилителя с источником тока в эмиттерной цепи и без эмиттерных резисторов. Используйте источник питания с напряжением +15 В. Коллекторный ток Iк (для каждого транзистора) должен быть равен 1 мА, а сопротивление коллекторного резистора сделайте равным Rк = 1,0 кОм. Подсчитайте коэффициент усиления по напряжению, при условии что один из входов заземлен,
(б ) Теперь модифицируйте схему так, чтобы источником тока в эмиттерной цепи можно было управлять с помощью внешнего напряжения. Составьте приблизительное выражение зависимости коэффициента усиления от управляющего напряжения. (В реальной схеме можно предусмотреть еще одну группу управляемых источников для того, чтобы скомпенсировать смещение точки покоя, обусловленное изменениями коэффициента усиления, или же можно включить в схему еще один каскад с дифференциальным входом.)
(7) Не желая прислушиваться к нашим советам, высокомерный студент создает усилитель, схема которого приведена на рис. 2.82. Он регулирует сопротивление R2 так, чтобы точке покоя соответствовало напряжение 0,5 Uкк.
(а ) Определите Z вх (на высоких частотах, когда выполняется условие Ζ κ ~= 0).
(б ) Определите коэффициент усиления по напряжению для малого сигнала,
(в ) Определите грубо, при каком изменении температуры окружающей среды транзистор перейдет в режим насыщения.
Рис. 2.82.
(8) В некоторых прецизионных операционных усилителях (например, ОР‑07 и LT1012) для подавления входного тока смещения используется схема, показанная на рис. 2.83 (подробно показана только половина дифференциального усилителя с симметричным входом, другая половина выглядит точно также). Объясните, как работает схема. Замечание: транзисторы T1 и Т2 представляют собой согласованную по β пару. Подсказка: вспомните о токовых зеркалах.
Рис. 2.83. Схема подавления входного тока, широко используемая в высококачественных ОУ.
Глава 3
ПОЛЕВЫЕ ТРАНЗИСТОРЫ
Введение
Перевод Б.Н. Бронина
Полевые транзисторы (ПТ) – это транзисторы, свойства которых совершенно отличаются от свойств рассмотренных в предыдущей главе обычных транзисторов, называемых также биполярными, чтобы подчеркнуть их отличие от ПТ. В расширенном толковании, однако, они имеют много общего, так что их можно определить как приборы, управляемые зарядом. В обоих случаях мы имеем прибор с тремя выводами, в котором проводимость между двумя электродами зависит от наличия носителей заряда, которое в свою очередь регулируется напряжением, приложенным к третьему управляющему электроду.
Теперь о том, чем они отличаются друг от друга. В биполярном n‑p‑n ‑транзисторе переход коллектор‑база смещен в обратном направлении и обычно ток через него не течет. Подача на переход база‑эмиттер напряжения около 0,6 В преодолевает «потенциальный барьер» диода, приводя к поступлению электронов в область базы, где они испытывают сильное притяжение со стороны коллектора. Хотя при этом через базу будет протекать некоторый ток, большинство такого рода «неосновных носителей» захватывается коллектором. Результатом является коллекторный ток, управляемый (меньшим по величине) током базы. Ток коллектора пропорционален скорости инжекции неосновных носителей в базу, которая является экспоненциальной функцией разности потенциалов база‑эмиттер (уравнение Эберса‑Молла).
Биполярный транзистор можно рассматривать как усилитель тока (с огрубленно постоянным коэффициентом усиления h21Э) или как прибор‑преобразователь проводимости (Эберс‑Молл). В полевом транзисторе, как следует из его названия, проводимостью канала управляет электрическое поле, создаваемое приложенным к затвору напряжением. Здесь нет прямосмещенных р‑n ‑переходов, так что ток через затвор не течет и это, возможно, – наиболее важное преимущество ПТ перед биполярными транзисторами. Как и последние, ПТ бывают двух полярностей: n ‑канальные (с проводимостью за счет электронов) и р ‑канальные (с дырочной проводимостью). Эти полярности аналогичны уже известным нам соответственно n‑p‑n и p‑n‑p ‑транзисторам биполярного типа. Однако разнообразие ПТ этим не ограничивается, что может приводить к путанице. Во‑первых, ПТ могут изготавливаться с затворами двух различных типов (в результате мы имеем ПТ с p‑n ‑переходом и ПТ с изолированным затвором, так называемые МОП‑транзисторы), а во‑вторых, – двумя типами легирования канала (что дает ПТ обогащенного и обедненного типа).
Рассмотрим вкратце возможности, предоставляемые ПТ различного типа. Предварим, однако, это рассмотрение несколькими замечаниями общего плана. Наиболее важной характеристикой ПТ является отсутствие тока затвора. Получаемое, как следствие этого, высокое входное полное сопротивление (оно может быть больше 1014 Ом) существенно во многих применениях и в любом случае упрощает проектирование схем. В качестве аналоговых переключателей и усилителей со сверхвысоким входным полным сопротивлением ПТ не имеют себе равных. Сами по себе или в сочетании с биполярными транзисторами они легко встраиваются в интегральные схемы. В следующей главе мы увидим, насколько успешно это сделано при создании близких к совершенству (и фактически простых в использовании) операционных усилителей, а в гл. 8‑11 будет показано, как интегральные схемы на МОП‑транзисторах революционизировали цифровую электронику. Так как на малой площади в ИМС может быть размещено большее число слаботочных ПТ, то они особенно полезны для создания больших интегральных микросхем (БИС), применяемых в цифровой технике, таких как микрокалькуляторы, микропроцессоры и устройства памяти. Плюс к тому недавнее появление сильноточных ПТ (30 А или более) позволяет заменить биполярные транзисторы во многих применениях, зачастую получая более простые схемы с улучшенными параметрами.