Если соединить транзисторы, как показано на рис. 2.60, то полученная схема будет работать как один транзистор, причем его коэффициент β будет равен произведению коэффициентов β составляющих транзисторов.
Рис. 2.60. Составной транзистор Дарлингтона.
Этот прием полезен для схем, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) или для входных каскадов усилителей, если необходимо обеспечить большой входной импеданс.
В транзисторе Дарлингтона падение напряжения между базой и эмиттером в два раза больше обычного, а напряжение насыщения равно по крайней мере падению напряжения на диоде (так как потенциал эмиттера транзистора Т1 должен превышать потенциал эмиттера транзистора Т2 на величину падения напряжения на диоде). Кроме того, соединенные таким образом транзисторы ведут себя как один транзистор с достаточно малым быстродействием, так как транзистор Т1 не может быстро выключить транзистор Т2. С учетом этого свойства обычно между базой и эмиттером транзистора Т2 включают резистор (рис. 2.61).
Рис. 2.61. Повышение скорости выключения в составном транзисторе Дарлингтона.
Резистор R предотвращает смещение транзистора Т2 в область проводимости за счет токов утечки транзисторов Т1 и Т2. Сопротивление резистора выбирают так, чтобы токи утечки (измеряемые в наноамперах для малосигнальных транзисторов и в сотнях микроампер для мощных транзисторов) создавали на нем падение напряжения, не превышающее падения напряжения на диоде, и вместе с тем чтобы через него протекал ток, малый по сравнению с базовым током транзистора Т2. Обычно сопротивление R составляет несколько сотен ом в мощном транзисторе Дарлингтона и несколько тысяч ом в малосигнальном транзисторе Дарлингтона.
Промышленность выпускает транзисторы Дарлингтона в виде законченных модулей, включающих, как правило, и эмиттерный резистор. Примером такой стандартной схемы служит мощный n‑р‑n ‑транзистор Дарлингтона типа 2N6282, его коэффициент усиления по току равен 4000 (типичное значение) для коллекторного тока, равного 10 А.
Соединение транзисторов по схеме Шиклаи (Sziklai). Соединение транзисторов по схеме Шиклаи представляет собой схему, подобную той, которую мы только что рассмотрели. Она также обеспечивает увеличение коэффициента β. Иногда такое соединение называют комплементарным транзистором Дарлингтона (рис. 2.62).
Рис. 2.62. Соединение транзисторов по схеме Шиклаи («дополняющий транзистор Дарлингтона»).
Схема ведет себя как транзистор n‑р‑n ‑типа, обладающий большим коэффициентом β. В схеме действует одно напряжение между базой и эмиттером, а напряжение насыщения, как и в предыдущей схеме, равно по крайней мере падению напряжения на диоде. Между базой и эмиттером транзистора Т2 рекомендуется включать резистор с небольшим сопротивлением. Разработчики применяют эту схему в мощных двухтактных выходных каскадах, когда хотят использовать выходные транзисторы только одной полярности. Пример такой схемы показан на рис. 2.63.
Рис. 2.63. Мощный двухтактный каскад, в котором использованы выходные транзисторы только n‑р‑n ‑типа.
Как и прежде, резистор представляет собой коллекторный резистор транзистора Τ1. Транзистор Дарлингтона, образованный транзисторами Т2 и Т 3, ведет себя как один транзистор n‑р‑n ‑типа, с большим коэффициентом усиления по току. Транзисторы Т4 и Т5, соединенные по схеме Шиклаи, ведут себя как мощный транзистор p‑n‑p ‑типа с большим коэффициентом усиления. Как и прежде, резисторы R3 и R4 имеют небольшое сопротивление. Эту схему иногда называют двухтактным повторителем с квазидополнительной симметрией. В настоящем каскаде с дополнительной симметрией (комплементарном) транзисторы Т4 и Т5 были бы соединены по схеме Дарлингтона.
Транзистор со сверхбольшим значением коэффициента усиления по току. Составные транзисторы – транзистор Дарлингтона и ему подобные – не следует путать с транзисторами со сверхбольшим значением коэффициента усиления по току, в которых очень большое значение коэффициента h21Э получают в ходе технологического процесса изготовления элемента. Примером такого элемента служит транзистор типа 2N5962, для которого гарантируется минимальный коэффициент усиления по току, равный 450, при изменении коллекторного тока в диапазоне от 10 мкА до 10 мА; этот транзистор принадлежит к серии элементов 2N5961‑2N5963, которая характеризуется диапазоном максимальных напряжений U КЭ от 30 до 60 В (если коллекторное напряжение должно быть больше, то следует пойти на уменьшение значения β). Промышленность выпускает согласованные пары транзисторов со сверхбольшим значением коэффициента β. Их используют в усилителях с низким уровнем сигнала, для которых транзисторы должны иметь согласованные характеристики; этому вопросу посвящен разд. 2.18. Примерами подобных стандартных схем служат схемы типа LM394 и МАТ‑01; они представляют собой транзисторные пары с большим коэффициентом усиления, в которых напряжение UБЭ согласовано до долей милливольта (в самых хороших схемах обеспечивается согласование до 50 мкВ), а коэффициент h21Э – до 1 %. Схема типа МАТ‑03 представляет собой согласованную пару p‑n‑p ‑транзисторов.
Транзисторы со сверхбольшим значением коэффициента β можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316.
Следящая связь
При задании напряжения смещения, например в эмиттерном повторителе, резисторы делителя в цепи базы выбирают так, чтобы делитель по отношению к базе выступал в качестве жесткого источника напряжения, т. е. чтобы сопротивление параллельно включенных резисторов было значительно меньше, чем входное сопротивление схемы со стороны базы. В связи с этим входное сопротивление всей схемы определяется делителем напряжения – для сигнала, поступающего на ее вход, входное сопротивление оказывается гораздо меньше, чем это действительно необходимо. На рис. 2.64 показан соответствующий пример.
Рис. 2.64.
Полное входное сопротивление схемы равно приблизительно 9 кОм, а сопротивление делителя напряжения для входного сигнала равно 10 кОм. Желательно, чтобы входное сопротивление всегда было большим, и уж во всяком случае неразумно нагружать источник входного сигнала схемы делителем, который в конечном счете нужен только для того, чтобы обеспечить смещение транзистора. Выйти из затруднения позволяет метод следящей связи (рис. 2.65).
Рис. 2.65. Повышение входного импеданса эмиттерного повторителя на частотах сигнала за счет включения в цепь следящей связи делителя, обеспечивающего смещение базы.
Смещение транзистора обеспечивают резисторы R1, R2, R3. Конденсатор С2 выбирают таким, чтобы его полное сопротивление на частотах сигнала было мало по сравнению с сопротивлением резисторов смещения. Как всегда смещение будет стабильным, если сопротивление его источника по постоянному току, приведенное в базе (в данном случае 9,7 кОм), значительно меньше сопротивления по постоянному току со стороны базы (в данном случае ~ 100 кОм). Но здесь входное сопротивление для частот сигнала не равно сопротивлению по постоянному току.
Рассмотрим путь прохождения сигнала: входной сигнал Uвх порождает сигнал на эмиттере u Э ~= uвх, поэтому приращение тока, протекающего через резистор смещения R3, составит i = (uвх – uЭ)/ R3 ~= 0, т. е. Z вх = uвх / iвх) ~=
. Мы получили, что входное (шунтирующее) сопротивление схемы смещения очень велико для частот сигнала.
Другой подход к анализу схемы основан на том, что падение напряжения на резисторе R3 для всех частот сигнала одинаково (так как напряжение между его выводами изменяется одинаково), т. е. он представляет собой источник тока. Но сопротивление источника тока бесконечно. На самом деле фактическое значение сопротивления не бесконечно, так как коэффициент усиления повторителя немного меньше 1. Последнее вызывается тем, что падение напряжения между базой и эмиттером зависит от коллекторного тока, который изменяется при изменении уровня сигнала. Тот же результат можно получить, если рассмотреть делитель, образованный выходным сопротивлением со стороны эмиттера [ rЭ = 25/ IК (мА) Ом] и эмиттерным резистором. Если коэффициент усиления повторителя по напряжению обозначить А (А ~= 1), то действующее значение сопротивления R3 на частотах сигнала равно R3 /(1 – А). На практике действующее значение сопротивления R3 больше его номинала приблизительно в 100 раз, и во входном сопротивлении преобладает входное сопротивление транзистора со стороны базы. В инвертирующем усилителе с общим эмиттером может быть выполнена аналогичная следящая связь, так как сигнал на эмиттере повторяет сигнал на базе. Обратите внимание, что схема делителя напряжения смещения запитывается по переменному току (на частотах сигнала) с низкоомного эмиттерного выхода, поэтому входному сигналу не приходится этим заниматься.
Следящая связь в коллекторной нагрузке. Принцип следящей связи можно использовать для увеличения действующего(эффективного) сопротивления коллекторного нагрузочного резистора, если каскад нагружен на повторитель. При этом существенно увеличится коэффициент усиления каскада по напряжению [напомним, что KU = – gmRK, а gm = 1/(R3 + rЭ)]·
На рис. 2.66 показан пример двухтактного выходного каскада со следящей связью, построенной подобно рассмотренной выше схеме двухтактного повторителя.
Рис. 2.66. Следящая связь в коллекторной нагрузке усилителя мощности, представляющего собой нагружающий каскад.
Так как выход повторяет сигнал на базе транзистора Т2, конденсатор С создает следящую связь в коллекторную нагрузку транзистора Т1 и поддерживает постоянное падение напряжения на резисторе R2 при наличии сигнала (импеданс конденсатора С должен быть малым по сравнению с R1 и R2 во всей полосе частот сигнала). Благодаря этому резистор R2 становится подобен источнику тока, увеличивается коэффициент усиления транзистора Т1 по напряжению и поддерживается достаточное напряжение на базе транзистора Т2 даже при пиковых значениях сигнала. Когда сигнал становится близким к напряжению питания UКК потенциал в точке соединения резисторов R1 и R2 становится больше, чем UКК, благодаря заряду, накопленному конденсатором С. При этом если R1 = R2 (неплохой вариант выбора резисторов), то потенциал в точке их соединения превысит UКК в 1,5 раза в тот момент, когда выходной сигнал станет равен UКК. Эта схема завоевала большую популярность при разработке бытовых усилителей низкой частоты, хотя простой источник тока обладает преимуществами перед схемой со следящей связью, так как отпадает необходимость в использовании нежелательного элемента – электролитического конденсатора ‑ и обеспечиваются лучшие характеристики на низких частотах.