По традиции «аппаратную» книгу заключает глава о «здоровом питании», очень необходимом для выживания аппаратных интерфейсов. Все внутренние устройства ПК, включая и интерфейсные адаптеры, получают напряжение от блока питания системного блока и связаны общей «схемной землей» — шиной GND. Часть внешних устройств получают питание от того же блока питания, пользуясь штатными и нештатными способами. Штатное питание выводится на интерфейсные разъемы клавиатуры и мыши PS/2 (+5 В), USB (+5 В) и Fire Wire (8-40 В). «Нештатным» способом питание можно получить от сигнальных линий LPT-порта (менее 5 В) и СОМ-порта (двуполярное, около 12 В), но лишь с небольшим током нагрузки и некоторыми аппаратными и программными ухищрениями. Питание от сигнальных цепей интерфейса используется мышью, электронными ключами защиты и иными устройствами с малым потреблением. Остальные внешние устройства питаются от собственных источников питания со своей «схемной землей» и цепями заземления, и при их стыковке с системным блоком (и между собой) могут возникать проблемы заземления, о которых речь пойдет ниже. Проблемы заземления радикально решаются применением гальванической развязки сигнальных цепей от «схемной земли», но эту развязку имеют далеко не все интерфейсы.
Общие вопросы электропитания и заземления
Рассмотрим правила подключения к питающей сети с точки зрения безопасности как человека, так и компьютера.
Практически каждый блок питания компьютера или периферийного устройства имеет сетевой фильтр (рис. 13.1). Конденсаторы этого фильтра предназначены для шунтирования высокочастотных помех питающей сети на землю через провод защитного заземления и соответствующие трехполюсные вилку и розетку. «Земляной» провод соединяют с контуром заземления, но допустимо его соединять и с «нулем» силовой сети (разница ощущается только в особо тяжелых условиях эксплуатации). При занулении необходимо быть уверенным в том, что «нуль» не станет фазой, если кто-нибудь вдруг перевернет вилку питания. Если же «земляной» провод устройства никуда не подключать, на корпусе устройства появится напряжение порядка 110 В переменного тока (рис. 13.2): конденсаторы фильтра работают как емкостной делителе напряжения, и поскольку их емкость одинакова, 220 В делится пополам.
Рис. 13.1. Входные цепи блока питания
Рис. 13.2. Образование потенциала на корпусе компьютера
Конечно, мощность этого «источника» ограничена — ток короткого замыкания IКЗ на землю составляет от единиц до десятков миллиампер, причем чем мощнее блок питания, тем больше емкость конденсаторов фильтра:
IКЗ = UПит×2πFC
Здесь UПит=220 В, F=50 Гц — частота питающей сети, С — емкость конденсатора фильтра. При емкости конденсатора С=0,01 мкФ этот ток будет около 0,7 мА. Заметим, что здесь мы учитываем лишь частоту питающей сети. Для высокочастотных (импульсных) помех, приходящих как по сети, так и от входного преобразователя блока питания, те же конденсаторы представляют собой гораздо меньшее сопротивление, и ток короткого замыкания может возрастать во много раз.
Такие напряжение и ток опасны для человека. Попасть под напряжение можно, прикоснувшись одновременно к неокрашенным металлическим частям корпуса компьютера и, например, к батарее отопления. Это напряжение является одним из источников разности потенциалов между устройствами, от которой страдают интерфейсные схемы.
Посмотрим, что происходит при соединении двух устройств (компьютера и принтера) интерфейсным кабелем. Общий провод интерфейсов последовательных и параллельных портов связан со «схемной землей» и корпусом устройства. Если соединяемые устройства надежно заземлены (занулены) через отдельный провод на общий контур (рис. 13.3), проблемы разности потенциалов не возникает.
Рис. 13.3. Правильное подключение ПУ
Если же в качестве заземляющего провода использовать нулевой провод питания при разводке питающей сети с трехполюсными розетками двухпроводным кабелем, на нем будет набегать разность потенциалов, вызванная падением напряжения от протекающего силового тока INUL (рис. 13.4). Если в эти же розетки включать устройства с большим энергопотреблением, разность потенциалов (и импульсные помехи при включении-выключении) будет ощутимой. При этом эквивалентный источник напряжения при относительно невысокой э.д.с. ENUL (несколько вольт) будет иметь очень низкое выходное сопротивление, равное сопротивлению участка нулевого провода (доли ом).
Рис. 13.4. Появление разности потенциалов при двухпроводном кабеле питания
Уравнивающий ток через общий провод интерфейса IINT можно оценить по следующей формуле:
IINT = ENUL/(RNUL+RINT)
Здесь ENUL = INUL×RNUL; INUL = P/220, RNUL — сопротивление нулевого провода и соединительных контактов розеток, RINT — сопротивление общего провода интерфейса, P — мощность, потребляемая устройствами, расположенными на рисунке справа (P = P2 + P3). Поскольку обычно сопротивление интерфейсного кабеля больше питающего, через общий провод интерфейса потечет ток, существенно меньший, чем силовой. Но при нарушении контакта в нулевом проводе питания через интерфейсный провод может протекать и весь ток, потребляемый устройством. Он может достигать нескольких ампер, что повлечет выход устройств из строя. Невыровненные потенциалы корпусов устройств являются также источником помех в интерфейсах.
Если оба соединяемых устройства не заземлены, в случае их питания от одной фазы сети разность потенциалов между ними будет небольшой (вызванной разбросом емкостей конденсаторов в разных фильтрах). Уравнивающий ток через общий провод интерфейса будет мал, и разность потенциалов между схемными землями устройств будет тоже мала. Но не следует забывать о безопасности человека. Если незаземленные устройства подключены к разным фазам, разность потенциалов между их несоединенными корпусами будет порядка 190 В, при этом уравнивающий ток через интерфейс может достигать десятка миллиампер. Когда все соединения/разъединения выполняются при отключенном питании, для интерфейсных схем такая ситуация почти безопасна. Но при коммутациях в условиях включенного питания возможны неприятности: если контакты общего провода интерфейса соединяются позже (разъединяются раньше) сигнальных, разность потенциалов между схемными землями прикладывается к сигнальным цепям и они выгорают. Самый тяжелый случай — соединение заземленного устройства с незаземленным (рис. 13.5), особенно когда у последнего мощный блок питания.
Рис. 13.5. Подключение незаземленного устройства
Для устройств, блоки питания которых имеют шнуры с двухполюсной вилкой, эти проблемы тоже актуальны. Такие блоки питания зачастую имеют сетевой фильтр, но с конденсаторами малой емкости (ток короткого замыкания достаточно мал).
Весьма коварны сетевые шнуры компьютеров с двухполюсной вилкой, которыми подключаются блоки питания с трехполюсным разъемом. Пользователи, подключающие свои компьютеры в бытовые розетки, могут столкнуться с проблемами из-за отсутствия заземления.
Локально проблемы заземления решает применение сетевых фильтров типа «Pilot» и им подобных. Питание от одного фильтра всех устройств, соединяемых интерфейсами, решает проблему разности потенциалов. Еще лучше, когда этот фильтр включен в трехполюсную розетку с заземлением (занулением). Однако заземляющие контакты (обжимающие «усики») многих розеток могут иметь плохой контакт вследствие своей слабой упругости или заусениц в пластмассовом кожухе. Кроме того, эти контакты не любят частого вынимания и вставки вилок, так что обесточивание оборудования по окончании работы лучше выполнять выключателем питания фильтра (предварительно выключив устройства).
ВНИМАНИЕ
Настоятельно рекомендуется отключать питание при подключении и отключении интерфейсных кабелей. Небольшая разность потенциалов, которая практически исчезнет при соединении устройств общими проводами интерфейсов, может пробить входные (и выходные) цепи сигнальных линий, если в момент присоединения разъема контакты общего провода соединятся позже сигнальных. От такой последовательности обычные разъемы не страхуют.
Правила заземления в документации по импортной аппаратуре приводятся не всегда, поскольку подразумевается, что трехполюсная вилка всегда должна включаться в соответствующую (трехполюсную) розетку с заземлением, а не в двухполюсную с рассверленными отверстиями. В нашей стране распространены так называемые трехполюсные евророзетки (рис. 13.6, а). Заземление выполняется с помощью контактов-усиков, центральный заземляющий штырь используется нечасто. На рисунке показано правильное положение контактов нуля, фазы и заземления на розетке. При подключении к нему стандартного шнура питания на гнезде, обращенном к блоку питания, раскладка цепей будет соответствовать рис. 13.6, б.
Рис. 13.6. Положение «нуля», «фазы» и «земли»: а — на питающей розетке, б — на выходном гнезде шнура питания
К помехам, вызванным разностью потенциалов схемных земель (корпусов) устройств, наиболее чувствительны параллельные порты. У последовательных портов зона нечувствительности шире (пороги ±3 В). К этим помехам практически нечувствительны интерфейсы с гальванической развязкой сигнальных цепей от схемной земли.
Проблемы разводки электропитания и заземления стоят особенно остро в локальных сетях, поскольку здесь, как правило, имеется большое количество устройств (компьютеров и коммуникационного оборудования), соединенных между собой интерфейсными кабелями и значительно разнесенных в пространстве (локальная сеть может охватывать и многоэтажное здание). При заземленных корпусах устройств, сильно разнесенных территориально, между их корпусами будет разность потенциалов, обусловленная падением напряжения на заземляющих проводах. Эта разность будет особенно ощутимой, если разводка питания и заземления выполнена двухпроводным кабелем (см. рис. 13.4). В сетях на коаксиальном кабеле приходится обеспечивать надежное заземление кабельного сегмента (причем только в одной точке!); нарушение правил заземления коаксиала и соединяемых компьютеров может приводить к сбоям и выгоранию сетевых адаптеров. Коаксиальный кабель и разъемы не должны иметь контактов с металлическими частями корпусов аппаратуры. В сетях на неэкранированной витой паре (UTP) требуется лишь правильно (с заземлением) запитать все компьютеры и коммуникационное оборудование. Использование экранированной витой пары (STP) вносит дополнительные проблемы с соединением и заземлением экранов. Подробнее о решении проблем питания и заземления в сетях см. в [3].
Гальваническая развязка
Гальваническая развязка сигнальных цепей — это отсутствие связи по постоянному току между ними, «схемной землей» и другими питающими шинами. При наличии гальванической развязки потенциал сигнальных цепей относительно «схемной земли» может быть весьма значительным, но не должен превышать напряжения изоляции, допустимого для данного интерфейса. Гальваническая развязка может обеспечиваться разными способами, применимость их зависит от требований к напряжению изоляции и особенностей интерфейсных сигналов.
Оптическая развязка позволяет передавать дискретные сигналы в широком диапазоне частот, от постоянного тока до предела, обусловленного быстродействием приемника. Оптическая развязка может выполняться на оптронах — комбинациях излучателя (светодиода) и приемника (фотодиода, фототранзистора с усилителем-формирователем) в одной микросхеме. Напряжение изоляции может достигать 1–1,5 кВ, максимальная частота — от десятков кГц до десятков МГц. Оптронная развязка применяется, например, в интерфейсах «токовая петля», MIDI. Еще лучшую развязку (по напряжению) обеспечивают интерфейсы с оптоволоконной связью, где между излучателем и приемником располагается оптический кабель с коннекторами. Такая связь применяется в линиях Fiber Channel, оптических версиях Ethernet (и других сетевых технологиях), а также цифровой аудио-технике (S/PDIF). Полоса частот может достигать единиц и десятков Гигагерц, но это требует дорогостоящих излучателей и приемников. В оптических интерфейсах используется стеклянное и пластиковое волокно. Стеклянное волокно позволяет обеспечивать большую дальность связи, но все компоненты довольно дороги, а оконцовка волокна разъемами — довольно сложная процедура, которая может упрощаться за счет применения дорогих компонентов. Если дальность связи ограничивается единицами-десятками метров, то применяют гораздо более дешевое пластиковое волокно.
Трансформаторная развязка не позволяет передавать сигналы постоянного тока, но она гораздо дешевле оптической, и достижение высоких частот здесь не имеет столь существенных проблем. Напряжение изоляции разделительных трансформаторов, применяемых в интерфейсных схемах, составляет 0,5–2,5 кВ. Трансформаторная развязка применяется в локальных сетях (все адаптеры электрических версий Ethernet имеют импульсные трансформаторы во входных и выходных цепях), в Fibre Channel, модемах для телефонных и выделенных линий, цифровой аудиотехнике (S/PDIF).
Конденсаторная развязка — самый дешевый, но и неэффективный способ развязки, практически не защищающий от помех в интерфейсах. Такая развязка может применяться в дешевых устройствах Fire Wire.
Гальваническая развязка применяется также в источниках питания, где она необходима для обеспечения безопасности работы с устройствами. Гальваническая развязка между входом и выходом имеется у всех источников питания, в которых используются трансформаторы. У источников с трансформаторным входом на первичную обмотку трансформатора подается входное напряжение переменного тока (110–240 В, 50–60 Гц), а ко вторичной обмотке подключается выпрямитель (и стабилизатор напряжения, если имеется). У источников с бестрансформаторным входом основная часть схемы (выпрямитель, преобразователь-стабилизатор) не развязана с входом; отсутствие трансформатора позволяет им работать и от сети постоянного тока.