Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пересечение прямой линии с поверхностью.




Нахождение точек пересечения прямой линии с поверхностью производится следующим методом.

Через заданную прямую проводят вспомогательную поверхность.

Находят линию пересечения вспомогательной поверхности с заданной поверхностью.

Определяют общие точки прямой с линией пересечения поверхностей. Это и будут искомые точки.

Затем определяют видимость.

В каждом отдельном случае вспомогательную секущую поверхность выбирают так, чтобы она простейшим образом пресекалась с заданной поверхностью.

Например коническая поверхность пересекается горизонтальной прямой.

Заключим эту прямую в плоскость уровня горизонтальную плоскость.

Эта плоскость пресечет конус по окружности, которая на фронтальную плоскость проекций спроектируется в прямую линию, а на горизонтальную в окружность. Замерим радиус этой окружности от оси до очерковой образующей конуса в месте прохождения секущей плоскости на фронтальной проекции. Проведем эту окружность на горизонтальной проекции. Определим точки пересечения горизонтальной проекции горизонтали с этой окружностью.

Найдем их фронтальные проекции. Определим видимость.


                              h 2              12         22

     
 


                                    

                              h 1

                                              11                            21

      

Рассмотрим аналогичную задачу, но более сложный случай, когда плоскость частного положения в качестве дополнительной секущей провести нельзя.

 

 

                                                                                                   S 2

                                                      l 2

                                                                     1. 2  2 2

                                                                                                                                                                                                 

                                                                                                            T2

                                                                                                                      К 2 

                                                                                                                 P 2        

                                        3 2            4 2    

 


S 1

 


                          l 1

 

                                                                                                                       

                                                                       11  21

Т 1

К 1

Р 1  

                                                                3 1                                     4 1

Проведем линию через вершину конуса и пересекающую заданную прямую. Эти две линии зададут нам плоскость общего положения пересекающую поверхность конуса.

Построение начнем с фронтальной проекции. Проведем проекцию S2 T2 и продлим ее до пересечения с проекцией прямой проходящей через основание конуса в точке Р2.

Продлим также проекцию прямой l 2 до пересечения с проекцией прямой проходящей через основание конуса в точке К 2.

      Переходим к построениям на горизонтальной плоскости проекций.

      По линии проекционной связи на проекции прямой l 1

найдем Т 1.

      На продолжении S1 T1 на линии проекционной связи найдем положение Р 1. 

      Так как точка К принадлежит прямой L, то найдем ее проекцию К 1 по линии проекционной связи на продолжении

l 1.

      Теперь у нас есть две точки Р 1 и К 1 для того, чтобы

провести линию проходящую через основание конуса и одновременно принадлежащую плоскости в которую мы заключили прямую L.

      Проведем горизонтальную проекцию этой прямой, которая пересечет основание конуса в точках 31 и 41.

Соединив проекции этих точек с вершиной S 1 получим проекцию фигуры сечения.

       Там где прямая l 1 пересечет фигуру сечения будут точки 11 и 21. Это горизонтальные проекции точек пересечения прямой L с поверхностью конуса.

             Найдем фронтальные проекции этих точек. Для этого определим положение точек 32 и 42 и соединим их с вершиной S2. Остальное очевидно.

 

 

                   Пересечение прямой и поверхности.

                   (Повторение и продолжение).

 

Для контроля усвоения материала хочу предложить выполнить самостоятельно две простые задачи на пересечение прямых частного положения с поверхностями конуса и цилиндра.

     
 

 


  Чтобы построить точки пересечения прямой с конической или цилиндрической поверхностью, следует заключить прямую в плоскость, проходящую через вершину поверхности (собственную или несобственную), найти линию пересечения плоскости и поверхности, а затем точки, в которых эти линии пересекаются с заданной прямой.     

 

      ПЕРЕСЕЧЕНИЕ КРИВОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ.

Рассмотрим на примере пересечения кривой линии с поверхностью конуса.

На фронтальной проекции видно, что кривая L не может пересечь поверхность конуса с вершиной S левее точки А2 и правее В2.

Глядя на горизонтальную проекцию можно утверждать, что пересечение может находится в пределах ограниченных точками С 1 и D 1.

Определим как горизонтальные так и фронтальные проекции этих точек и рассмотрев их станем утверждать, что пересечение происходит между точками А и D. Если кто затрудняется прийти к такому выводу, то задавайте вопрос и я дополнительно поясню.

Далее воспользуемся дополнительным центральным проецированием.

Спроецируем коническую поверхность конуса S и кривую в пределах

АD на плоскость Т.

 

                                                                        

 

                                                                                                          S 2

 

                                                                                              Т2

                                                                                              

 

 

Проекцией поверхности будет окружность, а проекцией кривой кривая со штрихом.,то линии пересекаются в точках К и М.

Найдем горизонтальные проекции точек К и М.Соединив их с вершиной S получим горизонтальные проекции точек пересечения кривой с поверхностью. Найдем на фронтальной проекции этой кривой. соответствующие проекции точек пересечения. 

 

..

.

.

.

.

.

                          Метрическая задача.

 

      Задача очень простая. Мы сможем решить ее различными известными нам

методами. Я покажу вам решение самым первым методом - треугольника.

Вы же попробуйте получить решение заменой плоскости проекций и методом

вращения.

       Построить основной чертеж сферы с центром в точке С, если точка А

 принадлежит ее поверхности.

 

               

 

                             А 2 ·

 

.

 

.                                                        · С 2       

 

 

                                                          · С1

 

 

                                    · А1

 

 

Задача сводится к нахождению натуральной величины отрезка АС.

Если мы возьмем превышение по оси Z токи А2 над тоской С2 и отложим его под

прямым углом к проекции А1С1, то диагональ полученного прямоугольного

 треугольника будет равна натуральной величине отрезка или радиусу сферы.

 

 





Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 332 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

2530 - | 2189 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.