Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Синтез в базисах И-НЕ, ИЛИ-НЕ.




Наиболее часто используются базисы, состоящие из одной функции: И-НЕ, ИЛИ-НЕ.

Представление переключательной функции в этих базисах требует использования только этих операций с учетом ограничений по числу входов соответствующих элементов. Для этого используется закон Де Моргана:

f(аbсd)= = =  – это представление в базисе И-НЕ.

 – это представление в базисе ИЛИ-НЕ.

Соответствующие схемы представлены на рис. 63.

Рис. 63. Реализация логической функции f(аbсd)=

в базисе 2И-НЕ (а) и 2ИЛИ-НЕ (б),

т.е. для двухвходовых элементов И-НЕ, ИЛИ-НЕ

 

В случае превышения ограничения по числу входов элементов следует еще раз применить закон Де Моргана, например:

т.е. получили только одноместные и двухместные операции И-НЕ.

Синтез в базисе Жегалкина.

Полиномом Жегалкина называется представление логической функции в базисе {Å,И,НЕ} (имеется соответствующая алгебра Жегалкина). В данном представлении инверсия реализуется как сумма по модулю 2 с константой 1.

Для представления ДНФ в виде полинома Жегалкина необходимо выразить дизъюнкцию через конъюнкцию и инверсию.

Например:

хÚy= =(хÅ1)(yÅ1)Å1=

=xyÅxÅyÅ1Å1=xyÅxÅy.

(1Å1=0).

Пример. Представить в виде полинома Жегалкина логическую функцию xÚyÚz.

xÚyÚz= =(хÅ1)(yÅ1)(zÅ1)Å1=(xyÅxÅyÅ1)(zÅ1)Å1=

=xyzÅxzÅyzÅxyÅxÅyÅ1Å1=xyzÅxzÅyzÅxyÅxÅy.

Для преобразования полинома Жегалкина используются обычные приемы элементарной алгебры (исключение составляет равносильность аÅа=0).

Полином Жегалкина может быть получен по таблице истинности путем суммирования по модулю 2 конъюнкций переменных без инверсии xi или инверсных переменных (xjÅ1) соответствующих рабочих наборов.

Например, получим полином Жегалкина для функции f, таблица истинности которой имеет вид табл. 54.

Таблица 54

Таблица истинности

x y z f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

 

Тогда получим:

f=(xÅ1)(yÅ1)zÅ(xÅ1)y(zÅ1)Åx(yÅ1)(zÅ1)Åxyz=

=(xyÅxÅyÅ1)zÅ(xzÅxÅzÅ1)yÅx(yzÅyÅzÅ1)Åxyz=

=xÅyÅz,

что и требовалось доказать, ибо и рассматривалась функция сложения по модулю 2 трех аргументов.

Булева производная

 

Производная первого порядка  от булевой функции f по переменной xi определяется следующим образом [9]:

=f(х12,...,хi-1,1,xi+1,...,xn)Åf(x1,x2,...,xi-1,0,xi+1,...,xn),

где f(х12,...,хi-1,1,xi+1,...,xn) – единичная остаточная функция, получаемая в результате подстановки вместо хi константы 1, а f(х12,...,хi-1,0,xi+1,...,xn) – нулевая остаточная функция, получаемая в результате подстановки вместо xi константы 0.

Пример. f=х1Úх2.

Пример.

Пример.

Булева производная по xi=0, если f не зависит от xi, булева производная по xi=1, если f зависит только от xi.

Булева производная первого порядка определяет условия, при которых функция изменяет свое значение при изменении значения переменной xi .

В нашем примере функция f(х1х2х3) изменяет свое значение при изменении х1, если истинна конъюнкция х2х3, т.е. х2=1, х3=1.

Пример. Определим все булевы производные функции

Итак, значение функции изменяется (функция переключается) при изменении х1, если х2=1 или х3=0 ; при изменении х2, если х13=1 (х1х3=1); при изменении х3, если х1=1; х2=0 .

Смешанная булева производная k-го порядка определяется путем вычисления k раз булевых производных первого порядка от булевых производных первого порядка, например [9]:

Булева производная k-го порядка равна сумме по модулю 2 всех производных первых, вторых, третьих,..., k-х смешанных производных, и определяет условия, при которых функция изменяет значение при одновременном изменении соответствующих переменных, например:

Таким образом, f переключается при одновременном переключении х1, х2, когда х3=0, либо независимо от х3 при переключении х1 и х2 с 1,1 на 0,0 или с 0,0 на 1,1.

При синтезе методом каскадов оптимальное исключение переменных достигается путем анализа веса производных [9]. Вес производной по данной переменной – число конституент соответствующей переключательной функции. То есть, сначала исключается переменная, производная которой имеет максимальный вес, что означает максимальное изменение функции при изменении переменной.





Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 414 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2298 - | 1985 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.