Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основные определения теории конечных автоматов




 

Конечным автоматом (просто автоматом) называется система (пятерка) [19]:

S=<X,Y,Z,j,y>,

в которой Х={х12,...,хi} – конечное входное множество (входной алфавит); Y={y1,y2,...,yj} – конечное множество внутренних состояний автомата (алфавит состояний); Z={z1,z2,...,zk} – конечное выходное множество (выходной алфавит); j – функция переходов (из состояния в другие состояния); y – функция выходов.

Если указанные множества бесконечные, то это уже не конечный автомат, но может быть дискретный автомат.

Если функция переходов – вероятностная, то это недетерминированный автомат.

Если в автомате выделено одно состояние, называемое начальным (обычно это y1), то полученный автомат называется инициальным и обозначается <S,y>. Таким образом, по неинициальному автомату с i состояниями можно i различными способами определить инициальный автомат.

Функция переходов представляет собой отображение вида j:  или в другом виде:

y(t+1)=j[x(t),y(t)],

где x(t),y(t),y(t+1) – конкретные символы алфавитов Х и Y соответственно в моменты автоматного времени t, t+1 (в тактах t и t+1); y(t) называется текущим внутренним состоянием при соответствующем х(t), а y(t+1) – последующим внутренним состоянием.

Иначе говоря, функция переходов определяет последующее состояние автомата по заданному текущему и входному символу.

Функция выходов представляет собой отображение вида y: Х´Y®Z или в другом виде:

z(t)=y[x(t),y(t)],

где x(t),y(t),z(t) – конкретные символы алфавитов X,Y,Z соответственно. Мы не будем особо выделять последующие значения x(t+1) и z(t+1), поэтому зависимость от t будем указывать только для внутреннего состояния, чтобы отделять y(t) от y(t+1).

Указанная функция выходов – функция так называемого автомата Мили.

В теории конечных автоматов рассматривается также автомат Мура, у которого функция выходов проще: y:  или z(t)=y[y(t)].

Автомат называется комбинационным, если для любого входного символа х и любых состояний yi, yj j(х,yi)=j(х,yj)=z, иначе говоря, если выходной символ z не зависит от состояния и определяется текущим входным символом. Говорят, что у такого частного класса автомата все состояния эквивалентны и, следовательно, комбинационный автомат имеет одно состояние. Такой автомат задается тройкой:

S=<X,Z,y>.

Рассмотрим представление конечного автомата в виде «черного» ящика (рис. 51).

Рис. 51. Конечный автомат (КА) в виде «черного» ящика

 

В комбинационном автомате внутренних состояний не указывают.

Входное слово – последовательность входных символов.

Выходное слово – последовательность выходных символов, соответствующих входному слову. В конечном автомате также выделяется последовательность символов внутренних состояний, соответствующих входному слову.

Большой вклад в теорию дискретных (цифровых) автоматов внесли отечественные ученые: М.А. Гаврилов, который опубликовал первую в мире монографию «Теория релейно-контактных схем» (1950 г.), В.М. Глушков, В.Н. Рогинский, П.П. Пархоменко, В.Г. Лазарев, С.И. Баранов, А.Д. Закревский, Э.А. Якубайтис, С.В. Яблонский, В.И. Варшавский и др.

 





Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 278 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2995 - | 2785 -


© 2015-2026 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.