Хроматографический метод, предложенный русским ученым М.С.Цветом в 1903г., основан на использовании сорбционных процессов в динамических условиях. В простейшем виде эти условия создаются при прохождении потока смеси газов, паров, жидкостей или раствора через колонку, содержащую слой зерненого сорбента. Простота, эффективность и универсальность хроматографического метода дали возможность широко использовать его в различных областях науки, промышленности и техники.
Хроматография – один из наиболее часто используемых аналитических методов. Новейшими хроматографическими методами можно определять газообразные, жидкие и твердые вещества с молекулярной массой от 1 до 106 ммоль/литр.
Хроматография – это физико-химический метод разделения веществ, основанный на распределении компонентов между двумя фазами – неподвижной и подвижной. Неподвижной фазой обычно служит твердое вещество (сорбент) или пленка жидкости, нанесенная на твердое вещество. Подвижная фаза представляет собой жидкость или газ, протекающие через неподвижную фазу. Метод позволяет разделять многокомпонентную смесь, идентифицировать компоненты и определять ее качественный и количественный состав.
Хроматографическое разделение смеси компонентов основано на том, что вещества распределяются между неподвижной и подвижной фазами по-разному, поскольку силы взаимодействия между молекулами разделяемых веществ и молекулами этих фаз различные для каждого индивидуального соединения. Если соединения концентрируются в большей степени в неподвижной фазе, это означает, что силы взаимодействия между их молекулами и молекулами неподвижной фазы больше сил взаимодействия этих молекул с молекулами подвижной фазы, и наоборот. Чтобы управлять удерживанием компонентов, следует использовать различие силах межмолекулярного взаимодействия в подвижной и неподвижной фазах. Выбор этих сил зависит от химической природы распределяемых веществ.
В основу общепринятых классификаций многочисленных хроматографических методов положены следующие признаки: агрегатное состояние подвижной и неподвижной фаз, механизм взаимодействия сорбент – сорбат, форма слоя сорбента (техника выполнения), цель хроматографирования.
По агрегатному состоянию фаз хроматографию разделяют на газовую и жидкую.
Газовая хроматография включает газо-жидкостную и газотвердофазную, жидкостная – жидкостно-жидкостную, жидкостно-твердофазную и жидкостно-гелевую. Первое слово в названии метода характеризует агрегатное состояние подвижной фазы, второе – неподвижной.
По механизму взаимодействия сорбента и сорбата:
1) распределительная хроматография основана на различии в растворимости разделяемых веществ в неподвижной фазе или на различии в растворимости веществ в подвижной и неподвижной жидких фазах;
2) ионообменная хроматография – на разной способности веществ к ионному обмену;
3) адсорбционная хроматография – на различии в адсорбируемости веществ твердым адсорбентом;
4) эксклюзионная хроматография – на различии в размерах и формах молекул разделяемых веществ;
5) осадочная хроматография – основана на образовании отличающихся по растворимости осадков разделяемых веществ с сорбентом;
6) адсорбционно – комплексообразовательная хроматография – основанная на образовании координационных соединений разной устойчивости в фазе или на поверхности сорбента.
По технике выполнения выделяют:
1) колоночную хроматографию, когда разделение проводится в специальных колонках;
2) плоскостную хроматографию, когда разделение проводится на специальной бумаге (бумажная хроматография) или в тонком слое сорбента ( тонкослойная хроматография ).
По цели хроматографирования выделяют:
1) аналитическую хроматографию (качественный и количественный анализ);
2) препаратную хроматографию (для получения веществ в чистом виде, для концентрирования и выделения микропримесей);
3) промышленную (производственную) хроматографию для автоматического управления процессом (при этом целевой продукт из колонки поступает в датчик).
Тонкослойная хроматография
Н.А.Измайлов и М.С.Шрайбер в 1938г разработали новый вид хроматографии, названный тонкослойной хроматографией. Ими были разделены алкалоиды, экстрагированные из лекарственных растений на оксиде алюминия, нанесенном на стекло.
Тонкослойная хроматография (ТСХ) – вид хроматографии, в которой разделение обеспечивается движением подвижной фазы через нанесенный на подложку тонкий слой сорбента. Продвижение элюента по пластине обеспечивается капиллярными силами.
Принципы и основные понятия
На чистую ровную поверхность (пластинку из стекла, металла, пластмассы) наносят тонкий слой сорбента, который закрепляется на поверхности пластинки. На поверхность пластинки осторожно, чтобы не повредить слой сорбента, намечают линию старта и линию финиша растворителя (рисунок 16.1)
Рисунок 16.1
Схема разделения компонентов А и В методом ТСХ
На линию старта наносят (микрошприцем) пробу, содержащую смесь разделяемых веществ (А и В) в подходящем растворителе. Дают возможность испариться растворителю. После чего пластинку погружают в хроматографическую камеру, содержащую жидкую фазу ПФ, представляющую собой специально подобранный для данного случая растворитель или смесь растворителей. Под действием капиллярных сил ПФ самопроизвольно перемещается вдоль НФ от старта линии до линии фронта (финиша) растворителя, увлекая с собой компоненты А и В пробы, которые перемещаются с различной скоростью. После достижения за время t подвижной фазой линии фронта (финиша) растворителя, хроматографирование прерывают. Пластинку извлекают из камеры, высушивают на воздухе и определяют положение пятен В и А на поверхности пластинки. В рассматриваемом случае пятно компонента А переместилось от линии старта на расстояние lA, пятно компонента В – на расстояние lВ, а растворитель прошел расстояние L. Для характеристики разделяемых компонентов в системе вводят коэффициент подвижности D (распределения):
где Vi = li/t и VE=L/t - соответственно скорости перемещения i-го компонента и растворителя Е; li и L – путь, пройденный i-м компонентом и растворителем соответственно; t – время, необходимое для перемещения растворителя от линии старта до линии финиша растворителя. Расстояния li отсчитывают от линии старта до центра пятна, соответствующего компонента.
Для более надежной идентификации разделяемых компонентов используют «свидетели» - эталонные вещества, наличие которых предполагается в анализируемой пробе. Для характеристики разделения двух компонентов А и В вводят степень (критерий) разделения Rs;
где Δl – расстояние между центрами пятен компонентов А и В; а(А) и а(В) - соответственно диаметры пятен А и В на хроматограмме (рисунок 16.2).
Рисунок 16.2
Определение степени разделения Rs компонентов А и В
Чем больше Rs, тем четче разделяются пятна компонентов А и В на хроматограмме. Обычно коэффициент подвижности лежит в пределах Rs = 0 – 1. Оптимальное значение составляет 0,3 – 0,7. Условия хроматографирования подбирают так, чтобы величина Rs отличалась от нуля и единицы.
Для оценки селективности разделения двух компонентов А и В используют коэффициент разделения α:
Если α = 1, то компоненты А и В не разделяются.
Лабораторная работа