Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Свободные колебания в последовательном контуре




Рассмотрим свободные колебания в последовательном контуре, изображённом на рис. 2.19. Первоначально конденсатор заряжен до напряжения U0. При замыкании цепи конденсатор начнёт разряжаться, при этом возникает переменный ток I(t). Напряжения на индуктивности L, конденсаторе C и сопротивлении r будут:

 

Рис. 2.19.

Последовательный колебательный контур. Первоначально конденсатор заряжен до напряжения U0. После замыкания ключа в контуре возникают свободные колебания. Возможные типы колебаний будут показаны на рис. 2.20.

 

По правилу Кирхгофа сумма напряжений равна нулю.

 

Продифференцировав по времени, получим:

                                   или                                                                                          (2.34)

 

где                 δ – коэффициент затухания, а                  – круговая частота колебаний в

контуре без потерь, то есть при  = 0.

Будем искать решение в виде I (t) = A e iωt. Подставив это решение в (2.34), получим характеристический многочлен:

                                                           

 

 

Вот здесь нам и пригодилась экспоненциальная форма записи переменного тока. Если бы ток (заряд, напряжение) были синусоидальными, то во втором члене был бы косинус, и он бы не сократился! Кстати, если в показателе экспоненты не ставить i, то частота всё равно может получиться комплексной.

Решая это квадратное уравнение и используя начальные условия, получим:

                                                            где

 

то есть  

 

 

При наших начальных условиях, ток в контуре будет:

                                                                                                                                           (2.35)

 

Характер колебаний определяется величиной . При отсутствии потерь δ = 0 и в контуре возникают незатухающие синусоидальные колебания вида:

Напряжения на конденсаторе и индуктивности будут противофазны и равны по амплитуде. Их сумма в контуре без затухания будет всегда равна нулю!

 

Напряжения на конденсаторе и на индуктивности сдвинуты относительно тока на  , поэтому, когда ток через индуктивность максимален, напряжение на конденсаторе равно нулю. Максимум энергии магнитного поля катушки совпадает с нулём энергии электрического поля конденсатора и наоборот.

Если сопротивление всё же есть, но                   или                         ,                     , то:

 

 

                                                                                                                                           (2.36)

 

Если δ > ω 0, то:                                              (2.37)

Существует решение и при ω0 = δ.  Это решение есть предел, к которому стремятся (2.36) и (2.37) при  По правилу Лопиталя производные от числителя и знаменателя в (2.36) дадут , и в этом критическом случае ток будет  

 

 

Рис. 2.20.Собственные колебания в последовательном контуре при разных значениях затухания.  , f = 1 кГц, ω 0 = 6280 рад/сек.

 

В этом конспекте все графики сосчитаны (кроме экспериментальных!) и почти все начерчены в MATLABe. Кроме рис. 3.21-3.22, для которых применяли программу Cool Edit и рис. 4.12 и далее, для которых использовали виртуальные схемы и измерительные приборы из программы TINA.





Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 254 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2213 - | 2174 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.