Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Интервалы для среднего нормальной совокупности




Сгенерируем выборку (столбец) из 20 наблюдений над нормальной случайной величиной со средним а = 10 и дисперсией s2 = 4 и определим доверительные интервалы для а с уровнем доверия РД: 0.8, 0.9, 0.95, 0.98, 0.99, 0.999. Выполняется командой

Analisis - Descriptive staistics - в поле Statistics выбрать Conf. Limits for means и указывать значение Alpha error: 80 (90, 95 т.д.).

Выполнение в пакете SPSS

Уровень доверия

а) Генерация k = 50 выборок по n = 10 наблюдений, нормально распределенных с параметрами: среднее а = 10, дисперсия s 2 = 4.

Выборки поместим в таблицу с 50 строками (выборками) и 10 (объем выборки) столбцами (при таком размещении сокращается работа по генерации наблюдений). В первом столбце таблицы выделяем клетку в 50-й строке и вводим точку. 50 строк создано.

Переименуем 1-й столбец:

Data - Define Variable - Name: x 01 - OK

Сгенерируем наблюдения:

Transform - Compute - Target Variable (целевая переменная): x 01, Numeric Expression (числовое выражение):

NORMAL (2) + 10

это выражение вводим кнопками окна - ОК.- Change? - OK.

В первом столбце наблюдения получены. Повторяем, начиная с Transform, заменив х 01 на х 02; и так 9 раз (5 нажатий на 1 столбец). Матрица наблюдений получена.

б) Оценка средних.

В пакете статистики определяются по столбцам (переменным), поэтому выборки-строки преобразуем транспонированием в выборки-столбцы:

Data - Transpose...- все имена переменных переносим в правый список Variables (выделяем все, нажимаем кнопку-стрелку) - ОК.

Теперь имеется 50 столбцов - выборок по 10 строк - наблюдений. Первый столбец case - lbl можно удалить:

выделим его - Edit - Clear (или клавиша Delete).

Определим среднее по выборкам:

Statistics - Summarize - Descriptives...- перенесем имена всех столбцов в правый список, отметим Display labels (имена показывать) - Options...- отметим только Mean; îòìåòèì Display Order: Name (показывать по порядку) - Continue - OK.

В окне Output получаем столбец Mean результатов. Если в столбце есть пропуски или текст, удаляем лишние строки, чтобы столбец результатов состоял из 50 строк с числами.

Сохраним столбец результатов в буфере операцией Copy. Снова транспонируем матрицу (чтобы в дальнейшем не было пустых блоков). Получили 10 числовых столбцов и 50 строк (выборок).

Выделяем 1-й справа свободный столбец и с помощью Edit - Paste помещаем в него столбец средних. Присвоим ему имя as:

выделим его - Data - Define Variable - Name: as

в) Определение столбцов а1 и а2 левых и правых концов доверительных интервалов.

Пусть РД = 0.9, квантиль порядка (1 + РД)/2 = 0.95 есть fР = 1.645. Вычислим левые концы:

Transform - Compute - Target Variable: a1, Numeric Expression (по (5), учитывая, что s = 2): as – 1.645 * 2/ SQRT (10).

Аналогично вычислим левые концы а2.

г) Результаты k = 50 испытаний доверительного интервала представим графически, предварительно образовав столбец а с истинным значением 10 параметра; затем:

Graphs - Line...- Multiple (несколько графиков), Values of individual cases - Define - Line Represent (представить линии): а, а1, а2 - ОК.

Наблюдаем график, из которого видно, сколько интервалов из 50 не содержат истинное значение. Записываем его; оно должно находиться приближенно в пределах 5 ± 2 » 5 ± 4. График распечатаем или сохраним: File - Save As...

д) Пусть РД = 0.99; тогда fР» 2.57; если РД = 0.999, то fР» 3.29. Повторим пп. в) и г) для этих значений РД. Убеждаемся, что с ростом РД число ошибок уменьшается, но ширина интервала увеличивается (чем надежнее гарантия, тем меньше она гарантирует).

Задание: провести аналогично k = 50 испытаний доверительного интервала (7) - (9) для случая неизвестной дисперсии.

 

 





Поделиться с друзьями:


Дата добавления: 2017-04-15; Мы поможем в написании ваших работ!; просмотров: 225 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2575 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.