Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Дискретные и непрерывные модели




Система может быть дискретной или непрерывной по входам, по выходам и по времени в зависимости от того, дискретными или непрерывными являются множества U, Y, Т соответственно. Под дискретным понимается конечное или счетное[1] множество. Под непрерывным будем понимать множество объектов, для которого адекватной моделью служит отрезок, луч или прямая линия, т.е. связное числовое множество. Если система имеет несколько входов и выходов, то это значит, что соответствующие множества U, Т лежат в многомерных пространствах, т.е. непрерывность и дискретность понимаются покомпонентно.

Удобство числового множества как модели реальных совокупностей объектов состоит в том, что на нем естественным образом определяются несколько отношений, формализующих реально встречающиеся отношения между реальными объектами. Например, отношения близости, сходимости формализуют понятия похожести, сходства объектов и могут быть заданы посредством функции расстояния (метрики) d(x, у) (например, d(x, у) = | х - у |). Числовые множества являются упорядоченными: отношение порядка следования (х ≤ у) формализует предпочтение одного объекта другому. Наконец, над элементами числовых множеств определены соответствующие операции[2], например, линейные: х + у, х*у. Если для реальных объектов на входе и выходе также имеют смысл аналогичные операции, то естественным образом возникают требования к моделям (1) – (3): быть согласованными с этими операциями, сохранять их результаты. Таким образом, приходим, например, к линейным моделям: y = au + b, dy/dt = ay + bu и т.д., являющихся простейшими моделями многих процессов.

Как правило, дискретность множества U влечет за собой дискретность Y. Кроме того, для статических систем исчезает различие между непрерывным и дискретным временем. Поэтому классификация детерминированных систем по признакам «статические-динамические», «дискретные-непрерывные» включает шесть основных групп, представленных в таблице 2, где для каждой группы указан математический аппарат описания систем, методы численного анализа и оценки их параметров, методы синтеза (оптимизации), а также типичные области применения.

Таблица 2

ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ СИСТЕМ

 

 

 

  Типы систем Статические Динамические
Дискретные по U.Y Непрерывные по U.Y Дискретные по Т Непрерывные по Т
Дискретные по U, Y Непрерывные по U,Y Дискретные по U,Y Непрерывные по U, Y
Математический аппарат описания Графы, таблицы соответствий, булева алгебра Функции вещественных переменных Конечные автоматы Разностные уравнения Асинхронные автоматы, сети Петри, модели теории расписаний Обыкновенные дифференциальные уравнения
Методы оценки параметров и анализа Методы математической логики Методы интерполяции и аппроксимации Теория конечных автоматов Идентификация, теория устойчивости Методы идентификации Идентификация, численное интегрирование ОДУ
Методы синтеза Дискретное программирование, метод Куайна, карты Карно Методы оптимизации (линейное и нелинейное программирование) Динамическое программирование, методы синтеза микропрограммных автоматов Динамическое программирование, дискретный принцип максимума Динамическое программирование, теория расписаний Теория управления, методы оптимизации
Области применения Качественные модели исследования операций Количественные модели исследования операций Цифровые САУ, ГАП, логическое управление Импульсные и цифровые САУ Параллельные процессы в ЭВМ и ГАП САУ, механические, тепловые, электронные и др. процессы

Примечание: U - множество входов, Y - множество выходов системы

Модели состояния динамических систем

Модели общего вида

Важнейшую роль при описании динамических систем играет понятие состояния. Состояние - это совокупность величин (вектор)[3] , которые определяют (вместе с входным воздействием) будущее поведение системы.

В общем случае уравнения состояния – это системы дифференциальных или разностных уравнений первого порядка вместе с уравнениями для выходных величин. Начальное состояние представляет, «память» системы о прошлом. Модель состояния непрерывной динамической системы записывается в виде

(4)

(5)

 

где u 1, …, um - входные переменные, y 1, …, yl - выходные переменные, x 1, …, xn -переменные состояния. Вводя векторные обозначения, можно записать (5) в более компактном виде:

(6)

где , , .

Для моделей состояния справедлив следующий факт: любая нелинейная динамическая система может быть представлена как соединение линейных динамических и нелинейных статических звеньев.

Еще более общей формой описания динамических систем являются сингулярные дифференциальные (алгебро-дифференциальные) системы

(7)

частным случаем которых являются неявные системы

(8)

 

 

Линейные модели

Часто вместо (5) используют упрощенные ММ, основанные на том, что процессы в системе протекают, мало отклоняясь от некоторой так называемой опорной траектории удовлетворяющей уравнениям

. (9)

Тогда можно записать приближенную линеаризованную модель в отклонениях от этого режима:

(10)

где , , ,

 

Если расчетный режим является установившимся, т.е. не зависит от времени, то коэффициенты в (10) также не зависят от времени: A(t)=A, B(t)=B и т.д. Такие системы называются стационарными. Особенно часто на практике встречаются стационарные линейные непрерывные системы, описываемые более простыми уравнениями

, у = Сх. (11)

Матрицы А, В, С являются параметрами модели (11).

Если линеаризация приводит к большим погрешностям, то стараются, по возможности, выбрать ММ линейную по параметрам:

,

где А - матрица параметров порядка n × N, - нелинейная функция. К этому классу относятся, в частности, билинейные объекты.

Сказанное выше относится и к уравнениям дискретных по времени систем. Уравнения дискретной системы в общем случае имеют вид

, . (12)

Дискретным аналогом уравнений линейной стационарной системы (20) являются уравнения:

(13)

Наряду с уравнениями состояния широкое применение находят также модели в переменных «вход-выход» и модели, описываемые передаточными функциями. Для непрерывного времени уравнение «вход-выход» имеет вид

A(p)y(t)=B(p)u(t), (14)

где р = d/dt - символ дифференцирования по времени, , , причем в (14) всегда m < n. Дробно-рациональная функция называется передаточной функцией системы (14), а полином А(λ) - ее характеристическим полиномом [4]. Если уравнение (14) получено из (11), то

(15)

Они справедливы и в случае, когда вход и выход системы (11) являются векторами, при этом - матрица. Пользуясь (15), можно показать, что замена переменных состояния в (11) по формуле , где Т - неособая n×n матрица (det T = 0), не приводит к изменению передаточной функции (15). Это значит, что обратный переход от описания «вход-выход» к уравнениям состояния (11) неоднозначен: при сохранении передаточной функции базис в пространстве состояний можно выбирать по-разному. На практике применяются несколько типовых способов перехода от передаточной функции к уравнениям состояния. Эти способы соответствуют так называемым каноническим представлениям системы. Опишем один из них, приводящий к управляемому каноническому представлению. Вместо (13) вводятся два уравнения:

, (16-а)

(16-б)

где η - вспомогательная переменная.

Очевидно, что передаточные функции (14) и (16) совпадают. В качестве вектора состояния в уравнении (13) берется , так что . Из (16-а) и соотношений выводится форма матрицы А и вектора В в (11), а из (16-б), записанного в виде , получаем строку С:

(17)

 

 

Если для системы (14) наблюдению доступна производная от величины y при i<n-m -1, То она может быть получена, если в найденных уравнениях сохранить A, B, в форме (17) взять

Если в (14) m=n (такие передаточные функции называют несобственными), то систему (14) нельзя привести к виду (11), но можно привести к виду

(18)

где А и В имеют вид (17),

 





Поделиться с друзьями:


Дата добавления: 2017-04-14; Мы поможем в написании ваших работ!; просмотров: 2376 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2116 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.