Расчет. h 0 = 350 – 58 = 292 мм. Прочность наклонной полосы проверим из условия (47).
Определим коэффициенты jw 1 и jb 1:
отсюда jw 1 = 1 + 5a mw = 1 + 5 · 9,76 · 0,0059 = 1,29 < 1,3;
для тяжелого бетона b = 0,01;
тогда
т. е. прочность наклонной полосы обеспечена.
Прочность наклонного сечения по поперечной силе проверим из условия (50).
Определим величины Mb и qsw:
(см. табл. 21);
так как , принимаем – b = 150 мм, тогда:
Н/мм (кН/м).
Определим значение Qb,min, принимая jb 3 = 0,6:
Поскольку
условие (57) выполняется, и, следовательно, значение Мb не корректируем.
Согласно п. 3.32 определим длину проекции невыгоднейшего наклонного сечения с:
кН/м (Н/мм),
поскольку 0,56 qsw = 0,56 · 143 == 80 кН/м > q 1 = 12,9 кН/м, значение с определим только по формуле
м.
Тогда
кН.
Длина проекции наклонной трещины равна:
Поскольку c 0 = 0,288 < h 0 = 0,292 м, принимаем c 0 = h 0 = 0,292 м, тогда Qsw = qswc 0 = 143 · 0,292 = 41,8 кН.
Проверим условие (50):
т. е. прочность наклонного сечения по поперечной силе обеспечена. Кроме того, должно выполняться требование п. 3.29:
Условия п. 5.69 s < h /2 = 350/2 = 175 мм и s < 150 мм также выполняются.
Пример 14. Дано: свободно опертая железобетонная балка перекрытия пролетом l = 5,5 м; временная равномерно распределенная эквивалентная нагрузка на балку v = 36 кН/м; постоянная нагрузка g = 14 кН/м; размеры поперечного сечения b = 200 мм, h = 400 мм, h 0 = 370 мм; бетон тяжелый класса В15 (Rb = 7,7 МПа; Rbt = 0,67 МПа при g b 2= 0,9); хомуты из арматуры класса А-I (Rsw = 175 МПа).
Требуется определить диаметр и шаг хомутов у опоры, а также выяснить, на каком расстоянии от опоры и как может быть увеличен шаг хомутов.
Расчет. Наибольшая поперечная сила в опорном сечении равна:
кН,
где q = v + g = 36 +14 = 50 кН/м.
Определим требуемую интенсивность хомутов приопорного участка согласно п. 3.33б.
Из формулы (52) при jf = 0 и jb 2 = 2,0(см. табл. 21) получим
Согласно п. 3.32,
кН/м (Н/мм);
кН.
Так как
интенсивность хомутов определим по формуле (63):
кН/м (Н/мм).
При этом, поскольку
Н/мм < 130 Н/мм,
оставляем qsw = 130 Н/мм.
Согласно п. 5.69, шаг s 1 у опоры должен быть не более h /2 = 200 и 150 мм, а в пролете = 300 и 500 мм. Максимально допустимый шаг у опоры, согласно п. 3.29, равен:
мм.
Принимаем шаг хомутов у опоры s 1 = 150 мм, а в пролете — 2 s 1 = 300 мм, отсюда
мм2.
Принимаем в поперечном сечении два хомута диаметром по 10 мм (Аsw= 157 мм2).
Таким образом, принятая интенсивность хомутов у опоры и в пролете балки будет соответственно равна:
Н/мм;
Н/мм.
Проверим условие (57), вычислив Qb,min:
H.
Тогда
Следовательно, значения qsw 1 и qsw 2 не корректируем.
Определим, согласно п. 3.34, длину участка l 1 с интенсивностью хомутов qsw 1. Так как qsw 1 — qsw 2= qsw 2 = 91,6 H/мм > q 1 = 32 Н/мм, значение l 1 вычислим по формуле
(здесь мм).
Принимаем длину участка с шагом хомутов s 1 = 150мм равной 1,64 м.
Пример 15. Дано: железобетонная балка покрытия, нагруженная сосредоточенными силами, как показано на черт. 26, а; размеры поперечного сечения — по черт. 26, б, бетон тяжелый класса В15 (Rbt = 0,67 МПа при g b 2 = 0,9); хомуты из арматуры класса А-I (Rsw = 175 МПа).
Требуется определить диаметр и шаг хомутов, а также выяснить, на каком расстоянии и как может быть увеличен шаг хомутов.
Расчет. Сначала определим, согласно п. 3.31, величину Mb:
(см. табл. 21);
мм (см. черт. 26, б);
мм;