Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Ламинарное и турбулентное течение жидкости. Сила вязкого трения в жидкости. Число Рейнольдса. Формула Пуазейля.




Ламинарное течение — течение, при котором жидкость или газ перемещается слоями без перемешивания и пульсаций (то есть беспорядочных быстрых изменений скорости и давления).

Ламинарное течение возможно только до некоторого критического значения числа Рейнольдса, после которого оно переходит в турбулентное. Критическое значение числа Рейнольдса зависит от конкретного вида течения (течение в круглой трубе, обтекание шара и т. п.). Например, для течения в круглой трубе .

Турбулентность — явление, заключающееся в том, что при увеличении интенсивности течения жидкости или газа в среде самопроизвольно образуются многочисленные нелинейные фрактальные волны и обычные, линейные различных размеров, без наличия внешних, случайных, возмущающих среду сил и/или при их присутствии. Для расчёта подобных течений были созданы различные модели турбулентности.

Сила вязкого трения

Сила вязкого трения пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h.

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости. Самое важное в характере сил вязкого трения то, что тела придут в движение при наличии сколь угодно малой силы, то есть не существует трения покоя. Это отличает вязкое трение от сухого.

Число Рейнольдса

Число Рейнольдса — безразмерное соотношение, которое, как принято считать, определяет ламинарный или турбулентный режим течения жидкости или газа. Число Рейнольдса также считается критерием подобия потоков.

Число Рейнольдса определяется следующим соотношением: , где ρ — плотность среды, v — характерная скорость, l — характерный размер, μ — динамическая вязкость среды.

Переход от ламинарного к турбулентному режиму происходит по достижении так называемого критического числа Рейнольдса Rekp. При Re < Rekp течение происходит в ламинарном режиме, при Re > Rekp возможно возникновение турбулентности. Критическое значение числа Рейнольдса зависит от конкретного вида течения (течение в круглой трубе, обтекание шара и т. п.). Например, для течения в круглой трубе .

Число Рейнольдса как критерий перехода от ламинарного к турбулентному режиму течения и обратно относительно хорошо действует для напорных потоков. При переходе к безнапорным потокам переходная зона между ламинарным и турбулентным режимами возрастает, и использование числа Рейнольдса как критерия не всегда правомерно.

 

Формула Пуазейля

Эта формула служит для количественного описания процессов ламинарного течения вязкой жидкости в цилиндрической трубе постоянного сечения, где V - объем вязкой жидкости, L- длина участка трубы, r - ее радиус, t - время истечения жидкости, (Р1 - Р2) - перепад давлений, h - вязкость.


Разделив обе части этого выражения на время истечения t, слева получим объемную скорость течения жидкости Q. Величину 8hL / p r4 обозначим через X. Тогда формула Пуазейля принимает вид:


Величина Q определяется в основном радиусом сосуда r. Это обусловлено главным образом тем, что кровоток пропорционален четвертой степени r, но так же и тем, что другие члены уравнения, например, разность давлений или длина для данного сосуда остается при обычных обстоятельствах примерно постоянной. Такая запись аналогична закону Ома для участка электрической цепи.
С помощью формулы Пуазейля можно определить ряд характеристик кровотока. Так, зная объемную скорость кровотока Q и величину гидравлического сопротивления сосудов, можно найти величину давления крови в любой точке сосудистой системы. Если Ро - давление крови в желудочке сердца, а X - общее сопротивление сосудов на участке сосудистой системы между желудочком и данной точкой, то давление крови Р в данной точке равно:

Р = Ро - QX.

Закон Пуазейля не используют для объяснения процессов, протекающих в сосудистой системе, так как кровеносные сосуды не имеют жестких стенок, а кровь не является вязкой гомогенной жидкостью, но он может быть полезен для понимания качественных закономерностей.

 





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 1951 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2488 - | 2300 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.