Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Интервал и радиус сходимости




Рассмотрим функцию . Ее областью определения является множество тех значений x, при которых ряд сходится. Область определения такой функции называется интервалом сходимости.

Если интервал сходимости представляется в виде , где R > 0, то величина R называется радиусом сходимости. Сходимость ряда в конечных точках интервала проверяется отдельно.


Радиус сходимости можно вычислить, воспользовавшись радикальным признаком Коши, по формуле

или на основе признака Даламбера:

КОШИ - АДАМАРА ТЕОРЕМА

пусть задан степенной ряд

Если то ряд (1) сходится только в точке z=a; если то ряд (1) абсолютно сходится в круге радиуса

и расходится вне этого круга при если то ряд (1) абсолютно сходится при всех Содержание К. - А. т. выражается, таким образом, формулой Коши - Адамара (2), к-рую при этом следует понимать в расширенном смысле, включая равенства Иначе говоря, содержание К.- А. т. состоит в том, что внутренность множества точек (абсолютной) сходимости ряда (1) есть круг радиуса (2). В случае действительного степенного ряда (1) формула (2) определяет радиус интервала сходимости В основном К.- А. т. была высказана О. Коши (A. Cauchy) в его лекциях [1], опубликованных в 1821, полную ясность в формулировку и доказательство внес Ж. Адамар [2]. Для степенных рядов

но n комплексным переменным обобщением формулы Коши - Адамара является следующее соотношение:

к-рому удовлетворяют сопряженные радиусы сходимости r1..., rn ряда (3) (см. Круг сходимости). Записав соотношение (4) в виде получают уравнение, определяющее границу нек-рой логарифмически выпуклой кратно круговой области с центром а, к-рая и является внутренностью множества точек абсолютной сходимости ряда (3) при n>1.

Свойства степенных рядов

Степенной ряд (1.2) представляет собой функцию , определенную в интервале сходимости, т. е.

.

Приведем несколько свойств функции.

Свойство 1. Функция является непрерывной на любом отрезке , принадлежащем интервалу сходимости.

Свойство 2. Функция дифференцируема на интервале, и ее производная может быть найдена почленным дифференцированием ряда (1.2), т. е.

,

для всех .

Свойство 3. Неопределенный интеграл от функции для всех может быть получен почленным интегрированием ряда (1.2), т. е.

для всех.

Следует отметить, что при почленном дифференцировании и интегрировании степенного ряда его радиус сходимости R не меняется, однако его сходимость на концах интервала может измениться.

Приведенные свойства справедливы также и для степенных рядов (1.1).

Пример 2.1. Рассмотрим степенной ряд

.

Область сходимости этого ряда, как показано в примере 1.1, есть промежуток.

Почленно продифференцируем этот ряд:

.(2.1)

По свойству 2 интервал сходимости полученного степенного ряда (2.1) есть интервал.

Исследуем поведение этого ряда на концах интервала сходимости, т. е. при и при.

При степенной ряд (2.1) превращается в числовой ряд

.

Этот числовой ряд расходится, так как не выполняется необходимый признак сходимости : , который не существует.

При степенной ряд (2.1) превращается в числовой ряд

,

который также расходится, так как не выполняется необходимый признак сходимости.

Следовательно, область сходимости степенного ряда, полученного при почленном дифференцировании исходного степенного ряда, изменилась и совпадает с интервалом.





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 554 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2801 - | 2362 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.