Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Момент инерции тела относительно неподвижной оси. Теорема Штейнера.




Момент инерции характеристика инерциальных свойств при вращательном движении. Характеризует распределение массы относительно оси вращения.

– это точки

(это не «зе» английская, а знак такой).

Осевые моменты инерции некоторых тел:

Шар – , ось сплошного цилиндра , ось полого цилиндра - , прямой тонкий стержень - .

Теорема Штейнера – Для того, чтобы найти момент инерции относительно произвольной оси нужно сложить момент инерции этого телаотносительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела на квадрат расстояния между осями.

Уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Момент силы определяет скорость изменения момента импульса.

Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r, проведенного из точ­ки О в точку А приложения силы, на силу F:

Здесь М — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к F. Модуль момента силы

(18.1)

где a— угол между r и F; r sina = l — кратчайшее расстояние между линией действия силы и точкой О — плечо силы.

Моментом силы относительно неподвижной оси z называется скалярная величина Mz, равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z. Значение момента Мz не зависит от выбора положения точки О на оси z.

(18.3)

Уравнение (18.3) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Закон сохранения момента импульса.

В замкнутых системах моментов импульса отдельных частей с течением времени не изменяются.

(над всеми L нужен вектор «стрелка»).

В замкнутой системе момент внешних сил

Здесь мы продемонстрируем закон сохранения момента импульса с помощью скамьи Жуковского. Человек, сидящий на скамье, вращающаяся вокруг вертикальной оси, и держащий в вытянутых руках гантели (рис. 2), вращается внешним механизмом с угловой скоростью ω1. Если человек прижмет гантели к телу, то момент инерции системы уменьшится. Но момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость вращения ω2 увеличивается. Аналогичным образом, гимнаст во время прыжка через голову поджимает к туловищу руки и ноги, с целью уменьшить свой момент инерции и тем самым увеличить угловую скорость вращения.


 





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 2777 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2400 - | 2277 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.