Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Вопрос. Наибольшее и наименьшее значение непрерывной на отрезке функции. Примеры.




. Функция непрерывна на отрезке если:

1) она непрерывна на интервале ;
2) непрерывна в точке справа и в точке слева.

Функция непрерывна в точке справа, если она определена в данной точке и её правосторонний предел совпадает со значением функции в данной точке: . Она непрерывна в точке слева, если определена в данной точке и её левосторонний предел равен значению:

Вторая теореме Вейерштрасса, непрерывная на отрезке функция достигает своей точной верхней грани и своей точной нижней грани .

Число также называют максимальным значением функции на отрезке и обозначают через , а число минимальным значением функции на отрезке с пометкой .

В нашем случае:

.

Грубо говоря, наибольшее значение находится там, где самая высокая точка графика, а наименьшее – где самая низкая точка.

Важно! Как уже заострялось внимание в статье об экстремумах функции, наибольшее значение функции и наименьшее значение функцииНЕ ТО ЖЕ САМОЕ, что максимум функции и минимум функции. Так, в рассматриваемом примере число является минимумом функции, но не минимальным значением.

Кстати, а что происходит вне отрезка ? Да хоть потоп, в контексте рассматриваемой задачи это нас совершенно не интересует. Задание предполагает лишь нахождение двух чисел и всё!

Пример 1

Найти наибольшее и наименьшее значения функции на отрезке

Вопрос.Выпуклость и вогнутость прямой. Примеры.

Выпуклость функции, точки перегиба

График функции , дифференцируемой на интервале , является на этом интервале выпуклым, если график этой функции в пределах интервала лежит не выше любой своей касательной (рис. 1).

График функции , дифференцируемой на интервале , является на этом интервале вогнутым, если график этой функции в пределах интервала лежит не ниже любой своей касательной (рис. 2).

Теоремы о выпуклости функции и точках перегиба

Теорема

(Об условиях выпуклости или вогнутости графика функции)

Пусть функция определена на интервале и имеет непрерывную, не равную нулю в точке вторую производную. Тогда, если всюду на интервале , то функция имеет вогнутость на этом интервале, если , то функция имеет выпуклость.

Определение

Точкой перегиба графика функции называется точка , разделяющая промежутки выпуклости и вогнутости.

Теорема

(О необходимом условии существования точки перегиба)

Если функция имеет перегиб в точке , то или не существует.

Теорема

(О достаточном условии существования точки перегиба)

Если:

1. первая производная непрерывна в окрестности точки ;

2. вторая производная или не существует в точке ;

3. при переходе через точку меняет свой знак,

тогда в точке функция имеет перегиб.





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 411 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2486 - | 2349 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.