Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Обратное преобразование Лапласа имеет вид




f (t) = , (1.3.2)

где j – мнимая единица (j 2 = – 1), а интегрирование в (1.3.2) проводится по бесконечно удаленному контуру комплексной плоскости для действительного значения переменной s.

Для практического применения используют таблицы преобразований Лапласа (Web-сайт MCS), полученные на основании выражений (1.3.1) и (1.3.2). Пример показан в таблице 1.3.1.

Переменную s в преобразовании Лапласа можно рассматривать как оператор дифференцирования

s º . (1.3.3)

Аналогично можно ввести оператор интегрирования

. (1.3.4)

Продемонстрируем использование преобразования Лапласа для решения дифференциальных уравнений (типа 2.1.3) с постоянными коэффициентами. Преобразование Лапласа уравнения (2.1.3) дает в соответствии с таблицей 1.3.1

B [ s 2 Y (s)– sy (0)–d y (0)/d t ]+ C [ sY (s)–y(0)] + DY (s) = X (s). (1.3.5)

Если x (t) = 0 (входной сигнал отсутствует), y (0) = y 0 и d y (0)/d t = 0, то

Bs 2 Y (s) – Bs y 0 + CsY (s) – Cy 0 + DY (s) = 0. (1.3.6)

 

Таблица 1.3.1

f (t) F (s)
Ступенчатая функция Хевисайда, q (t) 1/ s
Импульсная функция Дирака d (t)  
tn n!/ sn +1
sin(w t) w /(s 2 + w 2)
cos(w t) s /(s 2 + w 2)
exp(- at) 1/(s + a)
f (k) (t) = d k f (t)/d tk skF (s)- sk -1 f (0)- sk -2 f’ (0)-…- - sf (k -1)(0)
F (s)/ s + (1/ s)
exp(- at) sin(w t) w /[(s 2 + a 2) + w 2]
exp(- at) cos(w t) (s + a)/[(s 2 + a 2) + w 2]

Выражая отсюда Y (s), получим образ выходного сигнала

Y (s) = . (1.3.7)

Если полином q (s) = Bs 2 + Cs + D, стоящий в знаменателе (1.3.7), приравнять нулю, то получим характеристическое уравнение, названное так потому, что его корни (или полюса) определяют характер движения системы. Корни полинома p (s) = (Bs + + C) y 0, стоящего в числителе (1.3.7), называют нулями системы. В полюсах функция Y (s) обращается в бесконечность, а в нулях она становится равной нулю. Расположение полюсов и нулей на комплексной s -плоскости определяет характер собственного (свободного) движения системы.

Полином q (s) можно записать в виде

q (s) = (ss 1) (ss 2), (1.3.8)

где s 1 и s 2 – корни полинома.

Тогда

Y (s) = . (1.3.9)

Пример 1.3.1. Рассмотрим частный случай, когда D / B = 2, а С / B = 3. Тогда выражение (1.3.9) примет вид

Y (s) = . (1.3.10)

Положение полюсов и нуля этой функции на s -плоскости показано на рис. 1.3.1, где s = s + jw

 
 

 


Рис. 1.3.1

 

В общем случае, разложив (1.3.9) на элементарные дроби, получим

Y (s) = , (1.3.11)

где k 1 и k 2 – коэффициенты разложения, называемые вычетами.

Теперь применим к (1.3.11) обратное преобразование Лапласа

y (t) = L-1{ }= L-1{ }+L-1{ }.

(1.3.12)

С помощью таблицы 1.3.1 находим решение

y (t) = k 1exp(s 1 t) + k 2 k 1exp(s 2 t) (1.3.13)

уравнения (2.1.3) в отсутствии входного воздействия, т.е., так называемое, свободное движение системы.

Часто бывает необходимо определить установившееся, или конечное, значение y (t). Теорема о конечном значении гласит, что:

(1.3.14)

где допускается наличие простого полюса Y (s) в начале координат s -плоскости (см. рис. 1.3.1), но не допускается наличие полюсов на мнимой оси и в правой полуплоскости, а также – кратных полюсов в начале координат.

Для примера 1.3.1 =0. Тем самым, свободное движение стремится к конечному значению y (t) = 0.

Передаточные функции линейных систем.

Передаточная функция линейной системы определяется как отношение преобразования Лапласа выходной переменной к преобразованию Лапласа входной переменной при условии, что все начальные значения равны нулю.

Передаточная функция существует только для линейных стационарных (с постоянными параметрами) систем и однозначно описывает динамическую связь между выходными и входными переменными.

Передаточная функция системы (2.1.3) получается, если в исходном уравнении (1.3.5) все начальные значения положить равными нулю

Bs 2 Y (s) + CsY (s) + DY (s) = X (s). (1.3.15)

Отсюда находим передаточную функцию

(1.3.16)

Пример 1.3.2. Передаточная функция RC цепи, изображенной на рис. 1.3.2, получается путем записи в операторной форме уравнений Кирхгофа для напряжений

U 1(s) = [ R +1/ Cs ] I (s), (1.3.17)

U 2(s) = I (s) / Cs.

 
 

 

 


Рис. 1.3.2

Тогда из (1.3.17) следует, что

, (1.3.18)

где t = RC есть постоянная времени цепи.

Пример 1.3.3. Пусть на вход цепи, изображенной на рис. 1.3.1, подано ступенчатое напряжение c амплитудой U 0 q (t), где q (t) – функция Хевисайда. Как будет изменяться напряжение на выходе цепи?

Так как U 1(s) = U 0/ s (см. таблицу 1.3.1), то согласно (1.3.18)

U 2(s) = U 1(s) = U 0 = U 0[ ].

В результате обратного преобразования Лапласа получим

u 2(t) = U 0 [1– exp(– t / t)]. (1.3.19)

Рассмотрим теперь поведение системы высокого порядка и найдем ее реакцию на входной сигнал после затухания собственного (свободного) движения.

Пример 1.3.4. Пусть дифференциальное уравнение движения системы имеет вид

y (n) + q n-1 y (n-1) +…+ q 0 y = p n-1 x (n-1) + p n-2 x (n-2) +…+ p 0 x, (1.3.20)

где y (t) есть реакция системы, а x (t) – возмущающая функция.

Если все начальные значения равны нулю, то вместо дифференциального уравнения (1.3.20) системы запишем его образ по Лапласу

s n Y (s) + q n-1 s n-1 Y (s) +…+ q 0 = (1.3.21)

= p n-1 s n-1 X (s) + p n-2 s n-2 X (s) +…+ p 0 X (s).

Тогда реакция системы состоит из свободного движения, определяемого начальными условиями, и вынужденного движения, обусловленного входным возмущением

Y (s) = , (1.3.22)





Поделиться с друзьями:


Дата добавления: 2017-02-24; Мы поможем в написании ваших работ!; просмотров: 388 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2477 - | 2272 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.