Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 


Применение дифференциала для приближенных вычислений.




При достаточно малых приращение функции приближенно равно ее дифференциалу, т. е. и

.

 

Пример 9. Найти дифференциал функции .

Решение. Найдем производную данной функции .

Следовательно, по определению дифференциала функции получим

.

Пример1 0. Вычислить с помощью дифференциала приближенное значение

Решение. Рассмотрим функцию . Пологая и применяя формулу , получим

.

 

Производные высших порядков.

Производной второго порядка (второй производной) функции называется производная от производной . Вторая производная обозначается так: , или , или .

Если - закон прямолинейного движения точки, то вторая производная пути по времени есть ускорение этого движения.

Аналогично производная третьего порядка функции есть производная производной второго порядка и т.д., производной n -го порядка от функции называется производная от производной -го порядка . Обозначается n -я производная так: или , или .

Пример 10. Дана функция .

Найти: , , ,…

Решение.

; ;

; ; ;

.

 

Пример 11. Дана функция

Найти: .

Решение. ,

Контрольные вопросы.

Производная функции.

2.Основные правила дифференцирования.

3.Производная обратной функции.

4.Формулы дифференцирования основных элементарных функций.

5.Понятия дифференциала функции.

6.Применение дифференциала к приближенным вычислениям.

7.Производные высших порядков.

Задания.

1. Пользуясь определением производной вычислить производные следующих функций:

1) ;

2) .

2. Найти производные и дифференциалы следующих функций

; ; ; ;

; ; ;

; .

3.Найти производные функций:

1) ;

2) ;

3) ;

4) .

4.Найти ,

1) если , ;

2) если , ;

3) если , .

5.Вычислить с помощью дифференциала приближенные значения

, , , .

 

6.Найти производные

1)обратных тригонометрических функций

; ; ; ; .

2) обратную к .

7. Найти , , ,…, для функций:

1) . 2) . 3) . 4) .

Занятие 5

1. Теоремы Ролля, Лагранжа, Коши. Фрмула Тейлора.

Теорема Ролля. Если функция непрерывна на отрезке , дифференцируема в интервале и то в интервале найдётся хотя бы одно значение , при котором

 

Теорема Лагранжа (о конечном приращении). Если функция непрерывна на отрезке , дифференцируема в интервале , то в этом интервале найдётся хотя бы одно значение , при котором выполняется равенство (геометрический смысл: касательная в точке параллельна секущей АВ).

 

Теорема Коши. Если функции и непрерывны на отрезке и дифференцируемы в интервале , причём то в этом интервале найдётся хотя бы одно значение , при котором где .

Формула Тейлора. Если функция имеет в точке все производные до порядка включительно, то

Это соотношение называется формулой Тейлора с остаточным членом в форме Пеано.

При = 0 получаем частный случай формулы Тейлора- формулу Маклорена

 

Приведем разложение некоторых функций по формуле Маклорена:

,

,

 

 

Пример 1. Выполняется ли теорема Ролля для функции

если а=-3; в=3. Найти значение .

Решение. Так как функция непрерывна и дифференцируема при всех значениях х и её значения на концах отрезка равны Следовательно, условия теоремы Ролля на этом отрезке выполняются. Значение определяем из уравнения , т.е. .

 

Пример 2. На дуге АВ кривой найти точку М, в которой касательная параллельна хорде АВ, если А(1,3) и В(3,3).

Решение. Функция непрерывна и дифференцируема при всех значениях х. По теореме Лагранжа между двумя значениями а=1 и в=3 существует значение х= , удовлетворяющее равенству:

где

Подставив соответствующие значения, получим

Отсюда . Таким образом, точка М имеет координаты М(2;4).

Пример 3. Проверить теорему Коши для функции 3 и и найти с.

Решение. Из формулы Коши имеем

, т.е. .

Отсюда, получим .

Пример 4. Разложить функцию по формуле Тейлора в окрестности точки .

Решение. Представим, данную функцию в виде

.

Далее воспользуемся формулой .

Будем иметь

 

Пример 5. Вычислить предел, используя разложение по формуле Тейлора

.

Решение. Так как

и то получим

 

Контрольные вопросы.

1. Теоремы Ролля, Лагранжа, Коши.

2.Формула Тейлора. Формула Маклорена.

3.Разложение элементарных функций в ряд Маклорена.

Задания.

1. Применима ли теорема Ролля к функции на отрезке . Пояснить графически.

2. Проверить теорему Лагранжа и найти с для функций: а) на отрезке

б) на отрезке

3.Проверить теорему Коши и найти с для функций: а) и на отрезке ,

б) х2 и на отрезке .

4. Разложить функцию по формуле Тейлора в окрестности точки .

5. Найти пределы, используя разложение по формуле Тейлора

а) ,

б) .

Занятие 6.

Правило Лопиталя. (раскрытиенеопределенностей)

Первое правило Лопиталя.

Если функции и определены и непрерывны в некоторой окрестности точки и при , , и производные и существуют в упомянутой окрестности, за исключением, быть может, самой точки и существует ,

Тогда

.

Второе правило Лопиталя.

Если функции и определены и непрерывны в некоторой окрестности точки и при , , а производные и существуют в упомянутой окрестности, за исключением, быть может самой точки и существует ,

Тогда

.

Пример 1. Вычислить предел

Решение. Применяя первое правило Лопиталя получим = .

Пример 2. Вычислить предел .

Решение. Применяя первое правило Лопиталя получим .

Контрольные вопросы.

1.Первое правило Лопиталя.

2.Второе правило Лопиталя.

Задания.

1.Вычислить пределы, применяя правила Лопиталя:

1) , 2) ,

3) , 4) .

Занятие 7.





Поделиться с друзьями:


Дата добавления: 2017-01-21; Мы поможем в написании ваших работ!; просмотров: 650 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2474 - | 2422 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.
AI Assistant