Функция y=f(x) называется бесконечно малой при x→a или при x →∞, если или , т.е. бесконечно малая функция – это функция, предел которой в данной точке равен нулю.
Примеры.
- Функция f(x) =(x -1)2 является бесконечно малой при x →1, так как (см. рис.).
- Функция f(x) = tg x – бесконечно малая при x →0.
- f(x) = ln (1+ x)– бесконечно малая при x →0.
- f(x) = 1/ x – бесконечно малая при x →∞.
Установим следующее важное соотношение:
Теорема. Если функция y=f(x) представима при x→a в виде суммы постоянного числа b и бесконечно малой величины α(x): f (x)=b+ α(x) то .
Обратно, если , то f (x)=b+α(x), где a(x) – бесконечно малая при x→a.
Доказательство.
- Докажем первую часть утверждения. Из равенства f(x)=b+α(x) следует |f(x) – b|=| α|. Но так как a(x) – бесконечно малая, то при произвольном ε найдется δ – окрестность точки a, при всех x из которой, значения a(x) удовлетворяют соотношению |α(x)|< ε. Тогда |f(x) – b|< ε. А это и значит, что .
- Если , то при любом ε >0 для всех х из некоторой δ – окрестность точки a будет |f(x) – b|< ε. Но если обозначим f(x) – b= α, то |α(x)|< ε, а это значит, что a – бесконечно малая.
3. Бесконечно малые функции обладают следующими свойствами:
1) Алгебраическая сумма любого конечного числа бесконечно малых в некоторой точке функцийесть функция, бесконечно малая в той же точке.
2) Произведение любого конечного числа бесконечно малых в некоторой точке функций есть функция, бесконечно малая в той же точке.
3) Произведение бесконечно малой в некоторой точке функции на функцию ограниченную есть функция, бесконечно малая в той же точке.
БЕСКОНЕЧНО БОЛЬШАЯ ФУНКЦИЯ - функция переменного х, к-рая в данном процессе изменения х становится и остается по абсолютной величине больше любого наперед заданного числа. Точнее, функция f(x), определенная в окрестности точки х0, наз. бесконечно большой функцией при х, стремящемся к x0, если для любого числа М > 0 найдется такое число δ = δ (М) > 0, что для всех х ≠ х0 и таких, что |х - х0 | < δ, выполняется неравенство |f(x)| > M. Этот факт записывается так:
Аналогичным образом определяются
Напр.,
означает, что для любого М > 0 найдется такое δ = δ (M) > 0, что для всех z < - δ выполняется неравенство f(x) > M. Изучение Б. б. ф. может быть сведено к изучению бесконечно малых функций, т. к. если f(x) есть Б. б. ф., то функция ψ (х) = 1/f(x) является бесконечно малой.
Пусть функция f(x) определена на некотором множестве Е и х0 – предельная точка множества Е.
Функция f(x) называется непрерывной в точке х0, если
1. Она определена в точке х0
2. Существует конечный предел
3. Этот предел равен значению функции в точке х0.
Иначе говоря, функция у=f(x) называется непрерывной в точке, если бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции, то есть