Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Четность, нечетность, периодичность тригонометрических функций




Известно, что для любого значение x верны равенства

sin (-x) = -sin x, cos (-x) = cos x


Следовательно, y = sin xнечетная функция, а y = cos xчётная функция. Так как для любого значения x из области определения функции y = tg x верно равенство tg (-x) = -tg x, то y = tg xнечетная функция.

Известно, что для любого значения x верны равенства

sin (x + 2π) = sin x, cos (x + 2π) = cos x.


Из этих равенств следует, что значения синуса и косинуса периодически повторяются при изменении аргумента на 2π. Такие функции называются периодическими с периодом 2π.

Функция f (x) называется периодической, если существует такое число T ≠ 0, что для любого x из области определения этой функции выполняется равенство f (x - T) = f (x) = f (x + T).
Число T называется периодом функции f (x).
Из этого определения следует, что если x принадлежит области определения функции f (x), то числа x + T, x - T и вообще числа x + Tn, n Є Z, также принадлежат области определения этой периодической функции и f (x + Tn) = f (x), n Є Z

Число 2π является наименьшим положительным периодом функции y = cos x, также и для функции y = sin x.
π - наименьший положительный период функции tg x.


 

Функция синус

Область определения функции— множество Rвсех действительных чисел. Множество значений функции — отрезок [-1; 1], т.е. синус функция — ограниченная. Функция нечетная: sin(−x)=−sin x для всех х ∈ R. График функции симметричен относительно начала координат. Функция периодическая с наименьшим положительным периодом 2 π: sin(x+2 π· k) = sin x, где k ∈ Z для всех х ∈ R. sin x = 0 при x = π·k, k ∈ Z. sin x > 0 (положительная) для всех x ∈ (2π·k, π+2π·k), k ∈ Z. sin x < 0 (отрицательная) для всех x ∈ (π+2π·k, 2π+2π·k), k ∈ Z.
Функция возрастает от −1 до 1 на промежутках:
Функция убывает от −1 до 1 на промежутках:
Наибольшее значение функции sin x = 1в точках:
Наименьшее значение функции sin x = −1в точках:

Функция косинус

 
Область определения функции— множество Rвсех действительных чисел. Множество значений функции — отрезок [-1; 1], т.е. косинус функция — ограниченная. Функция четная: cos(−x)=cos x для всех х ∈ R. График функции симметричен относительно оси OY. Функция периодическая с наименьшим положительным периодом 2 π: cos(x+2 π·k) = cos x, где k ∈ Z для всех х ∈ R.
cos x = 0при
cos x > 0 для всех
cos x < 0для всех
Функция возрастает от −1 до 1 на промежутках:
Функция убывает от −1 до 1 на промежутках:
Наибольшее значение функции sin x = 1в точках:
Наименьшее значение функции sin x = −1в точках:

Функция тангенс

 
Область определения функции— множествовсех действительных чисел, кроме

Множество значений функции — вся числовая прямая, т.е. тангенс — функция неограниченная.

Функция нечетная: tg(−x)=−tg x для всех х из области определения.
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π, т.е. tg(x+ π·k) = tg x, kZ для всех х из области определения.

tg x = 0при
tg x > 0 для всех
tg x < 0для всех
Функция возрастает на промежутках:

Функция котангенс

 
Область определения функции— множествовсех действительных чисел, кроме чисел

Множество значений функции — вся числовая прямая, т.е. котангенс — функция неограниченная.

Функция нечетная: ctg(−x)=−ctg x для всех х из области определения.
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π, т.е. ctg(x+ π·k)=ctg x, kZ для всех х из области определения.

ctg x = 0при
ctg x > 0 для всех
ctg x < 0для всех
Функция убываетна каждом из промежутков

 


 

Предел функции

Понятие предела функции является одним из самых важных в математике. Дадим два определения этому понятию.

Определение предела по Коши. Число A называется пределом функции f (x) в точке a, если эта функция определена в некоторой окрестности точки a за исключением, быть может, самой точки a, и для каждого ε > 0 существует δ > 0 такое, что для всех x, удовлетворяющих условию | xa | < δ, xa, выполняется неравенство | f (x) – A | < ε.

Определение предела по Гейне. Число A называется пределом функции f (x) в точке a, если эта функция определена в некоторой окрестности точки a за исключением, быть может, самой точки a, и для любой последовательности такой, что сходящейся к числу a, соответствующая последовательность значений функции сходится к числу A.

График 1.3.6.1. Предел функции y = x 2 при x → 2.
График 1.3.6.2. Предел функции при x → 0.

Если A – предел функции в точке a, то пишут, что

Определения предела функции по Коши и по Гейне эквивалентны.

График 1.3.6.3. Предел функции y = { x (x ≠ 0); 1 (x = 0)} при x → 0 равен 0.

Предел функции в точке a = 0 равен 0: Предел функции в точке a = 0 также равен 0, хотя эта функция не существует в этой точке (ее знаменатель обращается в нуль). Предел функции в точке a = 0 равен 0, хотя значение функции в этой точке f (0) = 1.

Если функция f (x) имеет предел в точке a, то этот предел единственный.

Число A 1 называется пределом функции f (x) слева в точке a, если для каждого ε > 0 существует δ > 0 такое, что для всех выполняется неравенство

Число A 2 называется пределом функции f (x) справа в точке a, если для каждого ε > 0 существует δ > 0 такое, что для всех выполняется неравенство

Предел слева обозначается предел справа – Эти пределы характеризуют поведение функции слева и справа от точки a. Их часто называют односторонними пределами. В обозначении односторонних пределов при x → 0обычно опускают первый нуль: и . Так, для функции

Если для каждого ε > 0 существует такая δ-окрестность точки a, что для всех x, удовлетворяющих условию | xa | < δ, xa, выполняется неравенство | f (x)| > ε, то говорят, что функция f (x) имеет в точке a бесконечный предел:

Так, функция имеет в точке x = 0 бесконечный предел Часто различают пределы, равные +∞ и –∞. Так,

Если для каждого ε > 0 существует такое δ > 0, что для любого x > δ выполняется неравенство | f (x) – A | < ε, то говорят, что предел функции f (x) при x, стремящемся к плюс бесконечности, равен A:

Аналогично формулируется определение предела при x, стремящемся к минус бесконечности: В качестве примера приведем функцию которая стремится на бесконечности к нулю:

Наконец, запись означает, что для любого ε > 0 существует такое δ > 0, что для любого x > δ выполняется неравенство f (x) > ε. Запись означает, что для любого ε > 0 существует такое δ > 0, что для любого x > δ выполняется неравенство f (x) < –ε. Запись означает, что для любого ε > 0 существует такое δ > 0, что для любого x < –δ выполняется неравенство f (x) < –ε.

Если функция f (x) имеет конечный предел в точке a, то существует окрестность точки a, в которой функция f ограничена (возможно, что в самой точке a функция не определена). При этом, если A ≠ 0, то найдется окрестность точки a, в которой (быть может, за исключением самой точки a) значения функции f имеют тот же знак, что и число A.

Если существует такое δ > 0, что для всех x, принадлежащих δ-окрестности точки a, выполняются неравенства

g (x) ≤ f (x) ≤ h (x),

и если

,

то существует

Если существует такое δ > 0, что для всех x, принадлежащих δ-окрестности точки a, справедливо неравенство

f (x) < g (x),

и если то AB.

 

 


 





Поделиться с друзьями:


Дата добавления: 2016-12-28; Мы поможем в написании ваших работ!; просмотров: 1583 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2261 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.