Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Множественная (многофакторная) регрессия. Оценка существенности связи




Множественная регрессия - регрессия между переменными у и x1,x2,…,xm. Т. е. модель вида: у = f (x1,x2,…,xm)+E

где у - зависимая переменная (результативный признак);

x1,x2,…,xm- независимые, объясняющие переменные (признак-фактор); Е- возмущение, или стохастическая переменная, включающая влияние неучтенных факторов в модели.

Множественная регрессия применяется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах. Цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также их совокупное воздействие на моделируемый показатель.

Основные типы функций, используемые при количественной оценке связей: линейная функция: у = а0 + a1х1 + а2х2,+... + amxm. Параметры a1, а2, am, называются коэффициентами «чистой» регрессии и характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизменном значении других факторов, закрепленных на среднем уровне; нелинейные функции: у=ах1b1 х2b2.... xmbm- - степенная функция; b1, b2..... bm - коэффициенты эластичности; показывают, насколько % изменится в среднем результат при изменении соответствующего фактора на 1 % и при неизменности действия других факторов.

- гипербола;

- экспонента.

Отбор факторов при построении множественной регрессии. Включение в уравнение множественной регрессии того или иного набора факторов связано с представлением исследователя о природе взаимосвязи моделируемого показателя с другими эко­номическими явлениями. Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям.

1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.

2. Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи. Включение в модель факторов с высокой интеркорреляцией может привести к нежелательным последствиям - система нормальных уравнений может оказаться плохо обусловленной и повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии.

3. Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми.

Методы построения уравнения множественной регрессии. Подходы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии к разным методам:

1) метод исключения (отсев факторов из полного его набора);

2) метод включения (дополнительное введение фактора);

3) шаговый регрессионный анализ (исключение ранее введенного фактора).

Каждый из этих методов по-своему решает проблему отбора факторов, давая в целом близкие результаты.





Поделиться с друзьями:


Дата добавления: 2016-12-06; Мы поможем в написании ваших работ!; просмотров: 516 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2513 - | 2360 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.