Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Вторая производная функции, заданной параметрически




Рассмотрим уравнение

где , − дважды дифференцируемые функции на некотором промежутке ; пусть, кроме того, функция строго возрастает (или убывает) на и ни в одной точке этого промежутка не равна 0. В пункте 20.7 доказано, что в этом случае уравнения (2) задают функцию , и производная этой функции равна

 

Бывает также, что производные по параметру обозначают так: , . Тогда формула (3) принимает вид: . Найдём вторую производную функции :

ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ

Однородную линейную функцию называют линейной формой.

Напомним, что если функция дифференцируема в точке , то

дифференциалом в x называют линейную форму .

Аналогично, если дифференцируема дважды в точке ,

то ее вторым дифференциалом называют квадратичную форму .

Вообще, n-ым дифференциалом в точке x будет n-ичная

форма (в предположении, что существует).

Для n-го дифференциала в точке x используют обозначение или, более

строго .

Таким образом, по определению,

= для всех Î .

Согласно этому определению, есть n-я степень функции и

потому используют обозначение . Тогда

для всех Î , или

.

Форма записи n-го дифференциала не инвариантна

уже при n=2. Действительно, подставляя вместо дифференцируемую

функцию в левую часть формулы (при n=2), получим

=

а в результате такой же подстановки в правую часть, имеем

.(5)

Правые части этих формул отличаются слагаемым .

Вообще говоря, это слагаемое не равно нулю. Однако если - линейная функция,

то и, вообще, для любого имеет место равенство ,

откуда следует, что формула будет верна и для линейной функции .

ЭЛАСТИЧНОСТЬ И ЕЁ СВОЙСТВА

Определение. Пусть функция y определена в некоторой окрестности точки x, дифференцируема в точке x и y(x) ≠ 0. Эластичностью функции y в точке x называется величина

(y) =

Если предположить, что x , то можно рассматривать величину

,

которая характеризует величину относительного изменения y в результате соответствующего относительного изменения x; например, процентное изменение спроса на товар в результате однопроцентного изменения цены этого товара. Тогда следует, что

Если y>0, то по теореме о производной сложной функции.

Если y<0, то ,

поэтому при y<0

Следовательно,

при y>0

при y<0

Обе эти формулы можно объединить в одну:

Теорема. 1) Если u, v – функции, для которых определены эластичности и ,

То: = +

- .

2) Если для функции y = y(x), определённой на интервале , существует обратная функция x = x(y), причём y дифференцируема на этом интервале и ни в одной точке x интервала не выполняется равенство , то для всех x 0, y 0 определены величины и ,

причём = .





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 522 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2210 - | 2136 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.