Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение 3. Корнем n-й степени из комплексного числа называется такое комплексное число, n-я степень которого равна подкоренному выражению.




Отсюда получаем формулу:

,

– берется арифметический, k придаются значения 0, 1, …, n-1. При других целых значениях k найденные значения корня повторяются. Геометрически эти n значений корня изобразятся вершинами правильного n-угольника, вписанного в окружность, в центром в нулевой точке, радиусом , вершины которого имеют полярные координаты

 

Пример 1.3. Найти все значения корней 8-степени из комплексного числа и построить их на комплексной плоскости.

Решение. Представим комплексное число в показательной форме

,

следовательно,

Всего будет восемь корней, общая формула для корня восьмой степени имеет вид

Все корни расположены на окружности радиуса с центром в нуле, и делят эту окружность на восемь равных частей.

Рис.3

Т.е. все корни имеют одинаковый модуль равный и получаются из одного из корней последовательным поворотом на кратный угол.

 

Области и кривые на комплексной плоскости.

По аналогии с вещественной плоскостью (вещественным пространством ) строится топология комплексной плоскости C. Задать топологию – значит определить какие множества будут называться открытыми и какие замкнытуми.

Самое простое открытое множество – это открытый круг. С помощью модуля комплексного числа его задать особенно просто – это все комплексные числа из круга с центром в точке , радиуса p, Причем, т.к. неравенство в задании круга строгое, то точки лежащие на окружности в этот круг не включаются. Т.е. это круг без граничной окружности, поэтому его целесообразно назвать открытым. Теперь можно дать определение открытого и замкнутого множеств.

Определение 4. Множество М из С называется открытым, если любая точка из М принадлежит М вместе с открытым кругом не нулевого радиуса. Множество М из С называется замкнутым, если оно является дополнением некоторого открытого множества.

Обычно, определение замкнутых множеств дают, как множества содержащие все свои предельные точки или множества, содержащие свою границу. Ясно, что открытые и замкнутые множества являются дополнениями друг друга. Все эти определения замкнутых множеств для нашего случая эквивалентны. К сожалению, существуют множества, которые не открыты и не замкнуты. Таким будет открытый круг, если к нему добавить любую точку на плоскости не попадающую в данный круг.

Для того, чтобы дать определение области, нам потребуется понятие непрерывной кривой.

Определение 5. Множество называется непрерывным образом отрезка или непрерывной кривой, если вещественные функции непрерывны на отрезке . Если функции непрерывно дифференцируемы на отрезке , то g называется главдкой кривой. При этом называется параметрическим представлением кривой g.

Для каждой непрерывной кривой g фиксируется одно из двух взаимно противоположных направлений движения подвижной точки , соответствующее возрастанию или убыванию параметра. В первом случае есть начало, – конец кривой, а во втором случае эти точки меняются местами. Кривая, начальная и конечная точки которой совпадают, называется замкнутой. Если одна и та же точка кривой соответствует двум или более различным значениям параметра, из которых по крайней мере одно отлично от а и b, то такая точка называется кратной. Непрервыная кривая, не имеющая кратных точек, называется жордановой или простой. Иными словами, если отображение, определяющее кривую взаимнооднозначно, то кривая жорданова или простая. Если начальная и конечная точки кривой совпадают, то жорданова кривая называется замкнутой. Если две любые точки множества М можно соеденить непрерывной кривой, то это множество называется линейно связным. Для открытых множеств понятия линейной связности и просто связности совпадают.





Поделиться с друзьями:


Дата добавления: 2016-12-05; Мы поможем в написании ваших работ!; просмотров: 666 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2456 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.