Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 


Основные подходы к построению математических моделей систем




Математическая схема – это звено при переходе от содержательного к формализованному описанию процесса функционирования системы с учётом воздействия внешней среды, т.е. имеет место цепочка: описательная модель – математическая схема – имитационная модель.

Каждая конкретная система S характеризуется набором свойств, под которыми понимаются величины, отображающие поведение моделируемого объекта (реальной системы) и учитываются условия её функционирования во взаимодействии с внешней средой (системой) Е.

Полнота моделирования регулируется, в основном, выбором границ «Система S – среда E».

Математическую модель (ММ) объекта моделирования, т.е. системы S можно представить в виде множества величин, описывающих процесс функционирования реальной системы и образующих в общем случае следующие подмножества:

- совокупность входных воздействий на S ;

- совокупность воздействий внешней среды ;

- совокупность внутренних (собственных) параметров системы ;

- совокупность выходных характеристик системы .

В перечисленных множествах можно выделить управляемые и неуправляемые величины. В общем случае непересекающиеся множества X, V, H, Y содержат как детерминированные так и стохастические составляющие. Входные воздействия E и внутренние параметры S являются независимыми (экзогенными) переменными, . Выходные характеристики – зависимые (эндогенные) переменные . Процесс функционирования S описывается оператором FS:

, (3.1)

где – выходная траектория, FS – закон функционирования S. FS может быть функция, функционал, логические условия, алгоритм, таблица или словесное описание правил.

Алгоритм функционирования AS – метод получения выходных характеристик с учётом входных воздействий . Очевидно один и тот же FS может быть реализован различными способами, т.е. с помощью множества различных AS.

Соотношение (3.1) является математическим описанием поведения объекта S моделирования во времени t, т.е. отражает его динамические свойства. (3.1) – это динамическая модель системы S. Для статических условий ММ есть отображения X, V, H в Y:

. (3.2)

Соотношения (3.1), (3.2) могут быть заданы формулами, таблицами и т.д. Также соотношения в ряде случаев могут быть получены через свойства системы в конкретные моменты времени, называемые состояниями.

Состояния системы S характеризуются векторами:

и , где в момент ; в момент и т.д., k = 1, …, nZ.

Z 1(t), Z 2(t), …, Zk (t) – это координаты точки в k -мерном фазовом пространстве. Каждой реализации процесса будет соответствовать некоторая фазовая траектория.

Совокупность всех возможных значений состояний называется пространством состояний объекта моделирования Z, причём zk Î Z.

Состояние системы S в интервале времени t 0 < t £ T полностью определяется начальными условиями , где , …; входными воздействиями , внутренними параметрами и воздействиями внешней среды , которые имели место за промежуток времени t *t 0 c помощью 2-х векторных уравнений:

(3.3)

(3.4)

иначе: (3.5)

Время в модели S может рассматриваться на интервале моделирования (t 0, T) как непрерывное, так и дискретное, т.е. квантованное на отрезке длиной D t.

Таким образом, под ММ объекта понимаем конечное множество переменных вместе с математическими связями между ними и характеристиками .

Моделирование называется детерминированным, если операторы F, Ф – детерминированные. Детерминированное моделирование – частный случай стохастического моделирования. В практике моделирования объектов в области системного анализа на первичных этапах исследования рациональнее использовать типовые математические схемы: дифференциальные уравнения, конечные и вероятностные автоматы, СМО и т.д. Не обладая такой степенью общности, как модели (3.3), (3.4), типовые математические схемы имеют преимущество простоты и наглядности, но при существенном сужении возможности применения.

В качестве детерминированных моделей, когда при исследовании случайный факт не учитывается, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные и другие уравнения, а для представления систем, функционирующих в дискретном времени – конечные автоматы и конечно-разностные схемы.

В стохастических моделях (при учёте случайного фактора) для представления систем с дискретным временем используются вероятностные автоматы, а для представления систем с непрерывным временем – системы массового обслуживания (СМО). Большое практическое значение при исследовании сложных индивидуальных управленческих систем, к которым относятся АСУ, имеют так называемые агрегативные модели.

Aгрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характера этих объектов. Именно при агрегативном описании сложный объект расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивая взаимодействие частей.





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 673 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2322 - | 2301 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.