Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема 8. Уравнения Максвелла для электромагнитного поля




Согласно теории Максвелла для электромагнитного поля в случае нестационарных (то есть, изменяющихся во времени) электрического и магнитного полей, источниками электрического поля могут быть либо электрические заряды, либо изменяющееся во времени магнитное поле, а источниками магнитного поля могут быть либо движущиеся электрические заряды (электрические токи), либо переменное электрическое поле.

В отличие от стационарных полей переменные электрическое и магнитное поля не являются независимыми друг от друга и рассматриваются как электромагнитное поле.

Уравнения Максвелла, как система уравнений, описывающих природу происхождения и свойства электрического и магнитного полей в случае электромагнитного поля имеет вид:

I. , то есть циркуляция вектора напряженности электрического поля определяется скоростью изменения вектора индукции магнитного поля ( - скорость изменения вектора индукции ).

Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля.

 

II. , то есть поток вектора электрического смещения через произвольную замкнутую поверхность S, равен алгебраической сумме зарядов, заключенных внутри объема V, ограниченного данной замкнутой поверхностью S (r - объемная плотность заряда).

III. , то есть циркуляция вектора напряженности по произвольному замкнутому контуру L определяется полным током Iполн., пронизывающим поверхность S, ограниченную данным контуром L.

- полный ток Iполн, складывающийся из тока проводимости I итока смещения Iсм., то есть Iполн. = I + Iсм..

Суммарный ток проводимости I определяется в общем случае через поверхностную плотность тока j () интегрированием, то есть

.

Ток смещения Iсм, пронизывающий поверхность S, определяется в общем

случае через поверхностную плотность тока смещения () интегрированием, то есть: .

Введенное Максвеллом понятие «тока смещения», величина которого определяется скоростью изменения вектора электрического смещения , то есть величиной , показывает, что магнитные поля могут возбуждаться не только движущими­ся зарядами (электрическими токами проводимости), но и переменными электрическими полями.

IV. , то есть поток вектора индукции магнитного поля через произвольную замкнутую поверхность S равен нулю.

Таким образом, уравнения Максвелла для электромагнитного поля:

I. ; II. ;

III. ; IV. .

Векторные характеристики электрического поля и связаны между собой следующим соотношением: .

Векторные характеристики магнитного поля и связаны между собой следующим соотношением: .

Кроме того, вектора плотности тока проводимости и напряженности , фигурирующие в уравнениях Максвелла, также связаны между собой:

,

где – удельная проводимость вещества.

Уравнения Максвелла являются наиболее общими уравнениями для электрических и магнит­ных полей.

Тема 9. Электромагнитные колебания в колебательном контуре

Колебательный контур – это электрическая цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R. В идеальном колебательном контуре считается, что сопротивление R пренебрежимо мало ( 0), что позволят в идеальном контуре (рис. 19),состоящем только изкатушки индуктивности и конденсатора, получить незатухающие электромагнитные колебания.

Рис. 19





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 385 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2390 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.