Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Кинематические характеристики механизмов




 

Звенья функционирующего механизма выполняют определенные движения. Для изучения этих движений необходимо знать их характеристики, называемые кинематическими. К кинематическим характеристикам относятся траектории точек, перемещения точек и звеньев, их скорости и ускорения и др. общем случае кинематические характеристики зависят от закона движения ведущего звена и строения механизма. Такие характеристики, как функция поло­жения, передаточная функция определяются только строением механизма.

Всякое подвижное звено механизма - это заданной формы твердое тело, точки которого и звено в целом совершают определенные движения. Следо­вательно, для нахождения кинематических характеристик движения звеньев механизма необходимо знать общие методы кинематического исследования движения материальных точек и твердых тел.

 

 

Способы задания движения точки

Существуют три способа задания движения точки: векторный, координатный и естественный.

Векторный способ задания движения точки. Векторный способ задания движения точки применяют при теоретическом рассмотрении. Положение точки в пространстве при векторном способе определяется радиус- вектором r (рис. 2.1).

Рис 2.1

Непрерывная кривая АМВ. описываемая с те­чением времени движущейся точкой /V/. называется траекторией. В зависимости от траектории дви­жение может быть прямолинейным или криволинейным.

Геометрическое место концов любого пере­менного вектора при неизменном положении его начала называется годографом. Следовательно, траектория точки совпадает с годографом ее ради­ус-вектора.

При движении точки М вектор rизменяется как по модулю, так и по направлению, другими словами, он является переменным вектором, зависящим от аргумента t

г = r (t). (2.1)

Это и есть уравнение движения точки в векторной форме.

Если в момент времени t точка находится в положении М, то в момент времени t1 = t +D t она будет находиться в положении М1Соответственно, положение точки определяется радиус-векторами rи r 1,. Вектор MM1, является вектором перемещения точки М за данный промежуток времени D t

 

MM1 = D r = r1 – r (2.2)

Отношение вектора перемещения точки к соответствующему промежут­ку времени определяет среднюю скорость точки уср:

(2.3)

 

Чтобы получить характеристику движения, не зависящую от выбора промежутка времени, вводится понятие скорости точки в данный момент времени:

(2.4)

Следовательно,

(2.5)

Вектор скорости точки (см. рис. 2.1) будет направлен по касательной к траектории движения точки.

Если выбрать в пространстве точку и туда перенести все векторы скоростей в моменты времени, близко отстоящие один от другого, то получим кривую, являющуюся годографом вектора скорости (рис. 2.2). Годограф скорости представляет собой геометрическое место концов вектора скорости движущейся точки.

Если за время D t скорость изменилась на величину D v, то отношение изменения скорости к промежутку времени, за который произошло это изменение, будет средним ускорением. Для нахождения значения ускорения в данный момент времени необходимо найти предел отношения приращения скорости к промежутку времени, в течение которого оно произошло, при стремлении по­следнего к нулю:

(2.6)

Таким образом,

(2.7)

 

Рис. 2.2

Координатный способ задания движения точки. Координатный метод изучения движения точки используется в основном при решении технических задач.

При движении точки ее координаты изменяются с течением времени. Следовательно:

(2.8)

Это и есть уравнения движения точки в прямоугольных координатах.

Одновременно эти уравнения являются уравнениями траектории точки в параметрической форме. Ис­ключив из них параметр /, получим уравнение траектории, характери­зующее пространственную кривую в координатной форме.

Рис. 2.3

Радиус-вектор г (рис. 2.3), определяющий положение точки М, можно представить в форме

(2.9)

где i, j, k — единичные векторы (орты).

Система осей Охуz предполагается неподвижной, вследствие чего векторы (орты) i, j, k являются постоянными. Дифференцируя выражение (2.10) для радиус-вектора г, получим

(2.10)

Выражение (2.10) представим в виде

(2.11)

где vx, vy, vz- — проекции вектора скорости на соответствующие оси координат, определяемые из выражений

(2.12)

Модуль вектора скорости определяется выражением

(2.13)

а направляющие косинусы для вектора скорости записываются виде

(2.14)

Аналогично записываются выражения для вектора ускорения при координатном способе задания движения точки, модуля вектора и направляющих косинусов

 





Поделиться с друзьями:


Дата добавления: 2016-11-24; Мы поможем в написании ваших работ!; просмотров: 811 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2540 - | 2235 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.