Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Система лінійних рівнянь сумісна тоді й лише тоді, коли ранг r основної матриці системи дорівнює рангу розширеної матриці цієї системи.




За цією теоремою, якщо ранги основної та розширеної матриць не рівні, то система несумісна й немає сенсу її розв’язувати. Якщо ранги матриць рівні, то система сумісна.

Для сумісних лінійних рівнянь можливі такі випадки.

1. Якщо ранг матриці сумісної системи дорівнює числу невідомих, тобто r=n, то система (1) має єдиний розв’язок.

2. Якщо ранг матриці сумісної системи менший від числа невідомих, тобто , то система невизначена й має нескінченну кількість розв’язків.

Нехай ; тоді r невідомих x 1, x 2, ¼, xr називаються основними, або базисними, якщо визначник матриці з коефіцієнтів при цих невідомих відмінний від нуля. Решта n-r невідомих називаються неосновними, або вільними. Оскільки вільні невідомі можуть набувати довільних значень, то в цьому разі система буде невизначеною.

Розв’язок (1), в якому всі n-r неосновних невідомих дорівнюють нулю, називають базисним.

 

Однорідні системи. Фундаментальна система розв’язків СЛАР

Система m лінійних рівнянь з n невідомимими називається системою лінійних однорідних рівнянь, якщо всі вільні члени дорівнюють нулеві:

, (5)

Якщо у системі (5) т=п, а її визначник відмінний від нуля, то така система має тільки нульовий розв’язок. Ненульові розв’язки можливі лише для таких систем лінійних однорідних рівнянь, у яких число рівнянь менше за число змінних або дорівнює їм, коли визначник системи дорівнює нулеві.

Отже, система лінійних однорідних рівнянь має ненульові розв’язки тоді і тільки тоді, коли ранг її матриці коефіцієнтів при змінних менший за число змінних, тобто при .

Позначимо розв’язок системи (5) …, у вигляді рядка .

Розв’язки системи лінійних однорідних рівнянь мають такі властивості:

1. Якщо рядок - розв’язок системи (5), то і рядок - також розв’язок цієї системи.

2. Якщо рядки і - розв’язки системи (5), то при будь-яких і їх лінійна комбінація - також розв’язок даної системи.

Із сформульованих властивостей випливає, що будь-яка лінійна комбінація розв’язків системи лінійних однорідних рівнянь також є розв’язком цієї системи.

Означення. Система лінійно незалежних розв’язків називається фундаментальною, якщо кожен розв’язок системи (5) є лінійною комбінацією розв’язків .

Теорема. Якщо ранг матриці коефіцієнтів при змінних системи лінійних однорідних рівнянь (5) менший за число змінних п, то будь-яка фундаментальна система розв’язків системи (5) складається із розв’язків.

Тому загальний розв’язок системи (5) лінійних однорідних рівнянь має вигляд:

, (6)

де - будь-яка фундаментальна система розв’язків, - довільні числа і .

Отже, загальний розв’язок системи т лінійних рівнянь з п змінними (1) дорівнює сумі загального розв’язку відповідної їй системі однорідних лінійних рівнянь (5) і довільного частинного розв’язку цієї системи (5).





Поделиться с друзьями:


Дата добавления: 2016-11-22; Мы поможем в написании ваших работ!; просмотров: 1135 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Так просто быть добрым - нужно только представить себя на месте другого человека прежде, чем начать его судить. © Марлен Дитрих
==> читать все изречения...

2463 - | 2219 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.